The traditional definition of a circle is "the set of all points which are the same distance from a given point, called the centre." We make use of this definition of a circle when we take our compasses and draw, for example, a circle with a radius of 12 cm , centred on the page.

Now consider co-ordinate geometry. We can modify our definition, as follows. "A circle is the set of points $\mathrm{P}(\mathrm{x}, \mathrm{y})$ which are the same distance from the centre $\mathrm{Q}(\mathrm{h}, \mathrm{k})$." In the coordinate plane, the distance between these two points is given by formula $D=\sqrt{(x-h)^{2}+(y-k)^{2}}$. Below is the result with $D=$ radius $=5$ units and centre $Q(2,3)$.

GeoGebra Classic 5
File Edit View Options Tools Window Help

While this gives the correct result, the tradition is to work with D^{2}.
$D^{2}={\sqrt{(x-h)^{2}+(y-k)^{2}}}^{2}=(x-h)^{2}+(y-k)^{2}$.
Finally, we typically

- give the circle a name, say, C.
- change D to r, to emphasise that the relevant distance is length of the radius
- move the r^{2} term to the RHS, to emphasise that the circle equation is actually the Pythagorean equation, $b^{2}+a^{2}=c^{2}$, with base, $b=x-h$, altitude, $a=y-k$, and hypotenuse, $c=r$.

Here is the result

The screenshot shows the original definition in blue and the modified definition in red. Although not a proof that the two equations represent the same object; nevertheless, I believe you will find it convincing.

