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Introduction

Consider  an  object  falling  vertically  in  air,  under  the
influence of gravity. It experiences a drag force, which
opposes  the  downward  motion.  This  force  may  be
modeled as varying proportionally with the velocity, as

p
d dF C A v

where Cd is the drag coefficient, A is the cross-sectional
area in the direction of motion, v is the time-dependent
velocity, and  p is either 1 or 2. The value of 1 applies
for slower motion, in a viscous fluid, while p=2 applies
for more realistic examples. We want to find solutions
for  this  motion  (position,  velocity,  acceleration  as
functions of time) for both cases.

The approach we take depends on how we want to use
the force-balance (net force) information. We obtain the
acceleration of the object using Newton's Second Law,
and  we  know  that  this  acceleration  is  the  second
derivative of position, and it also is the first derivative
of  the  velocity.  This  will  give  us  two  choices  for  a
differential  equation.  A  differential  equation  is  an
algebraic relation that expresses the rate of change of a
dependent  variable  with  respect  to  an  independent
variable. The latter is, in many physics problems, time. 

Many  methods  are  available  for  solving  differential
equations, but these are beyond the mathematical level
of this course. Solutions will be presented below, using
various  methods,  but  they  will  not  be  discussed  in
detail. When we consider our solution options, we have
the situation shown in Table 1.
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d y
a

dt


dv
a

dt


position y(t) solve integrate

velocity v(t) differentiate once solve

acceleration a(t) differentiate twice differentiate once

Table 1. Solution options for acceleration problems.

Generally it will be easier to solve a first-order ordinary1

differential  equation  (ODE)  than  a  second-order,  but

1 Ordinary  as  opposed  to  partial differential  equations,  where  the
dependent  variable  is  a  function  of  more  than  one  independent
variable.

with  some  methods,  notably  Laplace  transforms,  it
doesn't make much difference. Note that the solution for
a first-order ODE requires one initial condition (such as
the velocity  at  time zero),  while a second-order  ODE
requires two initial conditions (usually the velocity and
position at time zero). We may or may not know these
initial conditions.

Next we proceed to develop the solutions; example plots
showing both sets of solutions (for  p=1 and  p=2) are
presented last.

Linear Dependence (p=1)

First  we  define  the  coordinate  system  as  y vertical,
positive upward, in the usual sense. The object begins
its  motion  at  y(0)  =  h,  with  zero  initial  velocity  (in
either direction). The force balance is

netF m a m g k v   

where k is Cd A, and the sign of the second term reflects
the fact  that  the velocity  is  negative  (i.e.,  toward  the
ground). From this we have
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d y dv k
a g v

dt mdt
                    (1)

As discussed above, from here we have two options. We
can solve for the position y, using the second order ODE

2

2

d y dy
g

dtdt
  

with  = k / m, having units of s-1, and then differentiate
the  solution  once  for  the  velocity,  and  again  for  the
acceleration. Or, we can write a first-order ODE in the
velocity

dv
g v

dt
  

and  differentiate  this  solution  to  get  the  acceleration,
and integrate the solution to find the position. 

First-Order ODE Solution

The approaches give the same result, so we begin with
the first-order ODE. This is readily solved using any of
several elementary methods; a straightforward choice is
a convolution integral, so that
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The  limit  of  (2)  as  time  increases  is  the  “terminal
velocity”

 lim expt T

g g
1 t v

 

         
     (3)

The  velocity  limit  as  the  drag  constant  k approaches
zero (the usual “vacuum” assumption) can be shown2 to
be

 lim exp0

g
1 t g t 



        

as we would expect.

The acceleration is the time derivative of (2), which is

 ( ) expa t g t                       (4)

which is just –g at time zero, and which approaches zero
as time increases.  Indeed, as the acceleration becomes
small, we have the “terminal velocity” condition. This
condition of small acceleration means that the forces are
(nearly) in balance, so we can easily find the terminal
velocity without calculus, since in magnitude

Tm g k v

and vT is the same as (3). Note that this velocity is only 
reached asymptotically, not exactly.

The position is obtained by integrating (2), which yields

 ( ) exp
2

g g
y t h 1 t t


              (5)

This is a somewhat unusual function in that it blends a
linear  term  and  an  exponential  term.  As  the  latter
vanishes  with  time,  the  position  begins  to  change
linearly.  This  is  sensible,  because  the  velocity  has
become constant.  The time required for  this condition
(i.e., the time to reach the terminal velocity) is about

7





which will cause the factor in brackets to be 0.999. This
function (5) has a natural lower bound of zero, when the
object hits the ground. We can approximate the time T
required to hit the ground, if it is larger than , after the
exponential has vanished, with

2 This requires the use of L’Hospital’s rule.

h 1
T

g




 

This  works  reasonably  well  as  long  as   is  not  too
small. As above we can consider the motion if the drag
constant   approaches zero, by taking the limit of (5).
This produces

 lim ( )
2

0

g t
y t h

2  

which  again  is  not  especially  obvious3.  Note  that  we
cannot, in general, just substitute zero for alpha in these
solutions, to see what happens in the “no-drag” case.
We must take a limit.4 However,  we can return to the
original ODE and use zero for  k, and then develop the
solutions  for  that  case.  This  will  of  course  yield  the
familiar  expressions  for  the  position,  velocity,  and
acceleration for free-fall in a vacuum.

We observe  that  the  solutions for  the  time-dependent
acceleration and velocity satisfy the original differential
equation (1). If we use (4) and (2) in (1) and simplify, it
will be seen that the resulting equation is correct.

Second-Order ODE Solution

The second-order ODE, for the position, can be solved
by several methods. A convenient technique which has
wide usefulness is Laplace transforms. (The first-order
ODE can of course be solved this way, as well.) This
will give

 2 g
s s h s h

s
      

where s is the Laplace variable and  is the transform of
y(t). From this we find

 
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g
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s
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

and  the  inverse  transform  -1 is  the  same  as  (5).
Differentiating this once gives (2), and twice gives (4). 

Quadratic Dependence (p=2)

In this case we have the drag force varying as the square
of the time-dependent velocity. This leads to

2
2

2

d y dv
a g v

dtdt
    

3 This also uses L'Hospital.
4 Simple substitution will work for (4) but not for (2) or (5).
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where   is similar to   but using the drag coefficient
that  applies in the quadratic-drag situation, and it  has
units of m-1. (We would not expect this coefficient to be
the same as that in the linear-drag case.) Again we can
write a first- or second-order ODE:
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In this case it  will  be simpler  to work with the first-
order  ODE.  Note  that  this  is  a  nonlinear  differential
equation. We will subscript the results below with a "2"
to indicate that the expressions apply for the quadratic-
drag case. 

Solutions

Using separation of variables, it can be shown5 that the
velocity is
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            (6)

This can be differentiated6 to give the acceleration
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            (7)

The  initial  acceleration  from  (7)  is  again  –g,  as  we
would  expect,  and  this  acceleration  approaches  zero
(since the  tanh approaches unity) with increasing time.
Finally, we can integrate7 (6) to get the position

 ( ) ln cosh2

1
y t h g t


                 (8)

As before we can obtain a terminal speed by noting that
(6) approaches

T

g
v


 

5 This solution method is considerably beyond the level of this course.
  Those  interested  should  see,  e.g.,  P.  V.  O'Neil,  Advanced
  Engineering Mathematics, 3rd Ed., Wadsworth (1991), pp.61-63.
6 J. J. Tuma, Engineering Mathematics Handbook, 3rd Ed., 
McGraw-  Hill (1987), p. 67.
7 ibid, p. 375.

as  time  increases.  Here  the  time  required  to  closely
approach the terminal velocity is

2

4

g





since tanh(4) is about 0.999. The time T required for the
object to hit the ground can be obtained by setting (8)
equal to zero, which gives

 cosh exp1
2

1
T h

g



   

Unlike the linear case (p=1), this expression approaches
the correct  result in the limit of small  ,  that is, little
drag; thus

 lim cosh exp1
0

1 2 h
h
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 




   

which is just the no-drag case. 

For plotting purposes it  would be useful  to match the
drag  coefficients  so  that  both  cases  reach  the  same
terminal velocity. This happens when

;
2g g

g
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

 
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With this value for , the quadratic-drag solutions are
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It can be shown, by taking limits, that the expressions
(6),  (7),  and  (8)  will  again produce  the  free-fall-in-a-
vacuum  results  as  the  drag  coefficient,  implemented
here in , approaches zero. Thus,
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2
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1 g t
h g t h

2 
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and  the  acceleration  result  of  -g we  can  see  by
inspection.
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Example Plots

Finally we have four figures,  one each  for position and acceleration and two for  velocity,  for  a range of  drag
coefficients, for both the linear and quadratic cases. The quadratic drag is "matched" to the linear case, to give the
same terminal velocity.  The thick lines are for the no-drag case.  The parameters are arbitrarily set to  m=10Kg;
k=5Kg/s; the resulting  = k / m is multiplied by 1 (top curve in Fig. 1), 0.5, 0.3, 0.1, and 0. Note that the quadratic-
case solutions for =0 match the zero-drag case (thick line) exactly. 

In Fig. 2 we see that the time required to attain the terminal velocity varies inversely with  and is shorter for the
quadratic drag than the linear. For the matched terminal velocities, we have that

;1 2

7 4
 

 
 

so that the linear case takes almost twice the time to attain the terminal velocity. Figure 3 shows a zoom into this
data, with the predicted times indicated by a triangle (linear) and square (quadratic). We can also see this difference
in Fig. 1, where the dotted lines (quadratic drag) attain the zero-acceleration level faster than the solid lines (linear
drag).

In Fig. 4, the position endpoint predictions were, in seconds: 53.0, 29.5, 22.0, 25.1, and infinite, for the linear-drag
solutions. The correct zero-drag time is 14.3 seconds. For the quadratic-drag solutions the endpoints were 52.4, 28.3,
19.9, 14.9, and 14.3 seconds. The latter agree well with the indicated times on the plot.
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Figure 1. Accelerations vs. time. Solid lines, p=1; dotted lines, p=2.
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Figure 2. Velocities vs. time.
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Figure 3. Velocities, showing predicted time-to-terminal-velocity; square=quadratic, triangle=linear.
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Figure 4. Positions vs. time.
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