Definición formal de límite. Applet en GeoGebra

1. a) Determinar el valor de L y completar la tabla para cada una de las siguientes funciones:

$$f(x) = 2x - 1, c = 3, L = \dots$$

	δ	$x_1 \in \mathring{E}_{\delta}(c)$	$f(x_1)$	$dist\left(f(x_1),L\right)$	$x_2 \neq c, x_2 \not\in \mathring{E}_{\delta}(c)$	$f(x_2)$	$dist(f(x_2), L)$
$\varepsilon = 0.83$							
$\varepsilon = 0.52$							
$\varepsilon = 0.12$							

•
$$f(x) = \frac{1}{2}\sqrt[3]{x}, c = 2, L = \dots$$

	δ	$x_1 \in \mathring{E}_{\delta}(c)$	$f(x_1)$	$dist\left(f(x_1),L\right)$	$x_2 \neq c, x_2 \not\in \mathring{E}_{\delta}(c)$	$f(x_2)$	$dist(f(x_2), L)$
$\varepsilon = 0.2$							
$\varepsilon = 0.14$							
$\varepsilon = 0.03$							

- b) ¿Qué creés que intentan mostrarnos estas tablas?
- c) Si observamos los valores en la última columna de cada tabla, ¿qué relación tienen estos valores con respecto al valor de ε ?
- 2. a) Sean las funciones $f_1: \mathbb{R} \to \mathbb{R}/f_1(x) = \frac{1}{3}x^3$ y $f_2: \mathbb{R} \to \mathbb{R}/f_2(x) = \frac{1}{x+1}$. Teniendo en cuenta la definición formal de límite y utilizando el applet de GeoGebra, determinar si las siguientes proposiciones son verdaderas o falsas. Justificar adecuadamente cada respuesta.

I)
$$0 < |x - 2| < 1 \Rightarrow \left| f_1(x) - \frac{8}{3} \right| < 1$$

II)
$$0 < \left| x - \frac{1}{2} \right| < \frac{1}{6} \Rightarrow \left| f_2(x) - \frac{2}{3} \right| < \frac{1}{10}$$

III)
$$0 < |x+1| < \frac{1}{2} \Rightarrow |f_1(x) + \frac{1}{3}| < \frac{2}{5}$$

- IV) Tomando $\varepsilon = 0,4$, $\delta = 0,3$ y c = -0,8 se verifica la definición de límite para f_2 cuando x tiende a c.
- V) Tomando $\varepsilon = 0.2$, $\delta = 0.1$ y c = 1.2 se verifica la definición de límite para f_1 cuando x tiende a c.
- b) En los casos en que las proposiciones anteriores sean falsas, utilizar el applet para dar un valor adecuado de δ para que las porposiciones resulten verdaderas. ¿Es único dicho valor?
- 3. a) Completar la siguiente tabla con los valores de δ que nos devuelve el applet para los diferentes casos planteados y conjeturar una relación entre ε y δ .

	$\varepsilon_1 = 1.2$	$\varepsilon_2 = 1$	$\varepsilon_3 = 0.5$	$\varepsilon_4 = 0.2$	$\varepsilon_5 = 0.1$	$\delta = \delta(\varepsilon)$
$\lim_{x \to 2} \frac{1}{3}x + 1 = \frac{5}{3}$						
$\lim_{x \to 1/3} 3x + 1 = 2$						
$\lim_{x \to 1} -\frac{1}{x} + 1 = 0$						

b) Demostrar de manera formal los límites anteriores utilizando la relación entre ε y δ obtenida en la última columna de la tabla.