Dans la suite le plan est rapporté à un repère orthonormé $(O; \overrightarrow{i}; \overrightarrow{j})$.

Eléments de symétrie d'une courbe (C) : y = f(x)

1. 1) Dans chacun des cas suivants, montrer que la courbe (C) d'équation y = f(x) admet l'élément indiqué comme élément de symétrie.

$$a-(C): y = f(x) = \frac{\sqrt{x^2 - 2x + 4}}{2x^2 - 4x + 1}$$
; la droite (d): $x = 1$.

$$b-(C): y = f(x) = \frac{x^2 + 2x + 2}{x + 1}$$
; le point $A(-1; 0)$.

2) Dans chacun des cas suivants, indiquer l'élément de symétrie de la courbe (C) d'équation y = f(x).

$$a - (C) : y = f(x) = \frac{x \cdot \sin x}{\cos x + 2}$$

$$b-(C): y = f(x) = (4+3\cos(2x)).\tan(x)$$

Fonctions composées.

2. Domaine de définition et calcul de gof.

Dans chacun des cas suivants, définir gof après avoir défini son domaine de définition :

1)
$$f: x \mapsto \frac{x}{x-1}$$
; $g: x \mapsto \frac{1}{x-2}$.

2)
$$f: x \mapsto \frac{2x}{x+1}$$
; $g: x \mapsto \frac{x+1}{x-1}$.

Dérivée de gof.

3. Calculer la fonction dérivée première de chacune des fonctions suivantes : (le domaine de dérivabilité de f ainsi que la forme réduite de la dérivée ne sont pas demandés)

1)
$$f: x \mapsto \sin^2(\sqrt{2x})$$
.

2)
$$f: x \mapsto \frac{1}{\cos^2(3x)}$$
.

3)
$$f: x \mapsto \sqrt{tan(3x)}$$
.

4)
$$f: x \mapsto 3x^2 \cdot sin(2x)$$
.

5)
$$f: x \mapsto \frac{\sin(3x)}{\cos(2x)}$$
.

4. 1) On donne les deux fonctions f et g définies dans l'intervalle $[0; +\infty]$.

Connaissant $f(x) = x^2$ et $g'(x) = \frac{1}{x}$ (g' est la fonction dérivée de g):

a- Calculer (gof)'(x).

b- Soit h la fonction définie par h(x) = $g(\sqrt{2x})$. *Calculer h'(x)*.

2) On donne les deux fonctions f et g définies dans l'intervalle $]-\infty$; $+\infty$ [.

Connaissant
$$g(x) = x^2 + x + 1$$
 et $f'(x) = \frac{1}{1+x^2}$.

Calculer $(f \circ g)'(0)$.

Applications des dérivées

5. Dans chacun des cas suivants, trouver l'équation de la tangente à la courbe (C) au point de cette courbe d'abscisse α .

1) (C) d'équation
$$y = f(x) = \frac{x}{x^2 + 1}$$
; $\alpha = 0$.

2) (C) d'équation
$$y = f(x) = 2x + 1 + \sqrt{-x^2 + 2x}$$
; $\alpha = 1$.

3) (C) d'équation
$$y = f(x) = x + \sqrt{x-2}$$
; $\alpha = 2$.

Formes indéterminées et règle de l'Hospital

6. Calculer les limites suivantes :

1)
$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x^2 - 1}$$

$$2) \lim_{x \to 3} \frac{\sqrt{3x} - 3}{x - 3}$$

3)
$$\lim_{x\to 0} \frac{\sin x - x}{\cos 2x + x - 1}$$

4)
$$\lim_{x \to \frac{1}{4}} \frac{\tan(\pi x) - 1}{4x - 1}$$

5)
$$\lim_{x \to 1} \frac{(2x+1)^2 - 9}{(3x-2)^4 - 1}$$

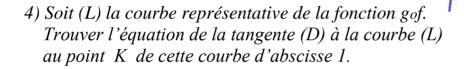
Dérivée seconde – concavité d'une courbe – point d'inflexion

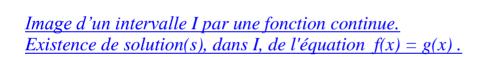
- 7. On considère la fonction f définie par $f(x) = x^3 3x^2 + 1$ et l'on désigne par f(x) sa courbe représentative.
 - 1) Etudier la concavité de (C) et en déduire que (C) admet un point d'inflexion A à déterminer.
 - 2) Montrer que A est un centre de symétrie de (C).

8. Les deux courbes (F) et (G) sont respectivement les courbes représentatives de deux fonctions f et g continues et dérivables sur IR

g est <u>la dérivée</u> de f.

- (F) passe par B(-2;-2) et par A(1;1).
- (T) est la tangente en A à la courbe (F).
- (G) passe par E(-2;7) et admet au point (1;-2) une tangente parallèle à l'axe des abscisses.
- 1) Trouver l'équation de (T).
- 2) Calculer $\lim_{x\to -2} \frac{f(x)+2}{x+2}$ et donner une interprétation graphique à la valeur ainsi trouvée.
- 3) Montrer que A est un point d'inflexion de (F).





- **9.** 1) Montrer que l'équation $x^3 + x^2 + 2x 1 = 0$ admet une solution unique α .
 - 2) Vérifier que $0.39 < \alpha < 0.40$

α.

- **10.** Soit f la fonction définie sur $\underline{\mathsf{IR}}$ par $f(x) = \frac{1}{3}x^3 x + 1$.
 - 1) a- Démontrer que l'équation $f(x) = \frac{8}{5}$, admet dans [-2; -1] une solution unique

B

-2

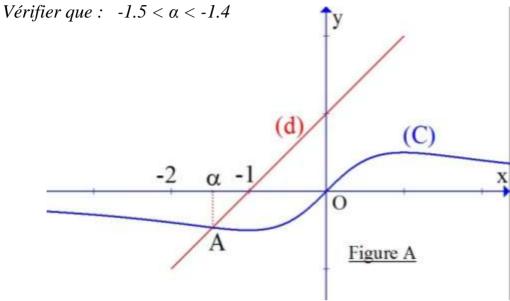
b- Démontrer que : - 1.25 < \alpha < - 1.24

- 2) a- Démontrer que l'équation f(x) = 0, admet dans [-3; -2] une solution unique β . b- Démontrer que : $-2.11 < \beta < -2.10$.
- **11.** On considère les deux fonctions f et g définies sur] 0; $+\infty$ [par]

 $f(x) = \frac{1}{x}$ et $g(x) = x^2 + 1$, et l'on désigne par (F) et (G) leurs courbes représentatives.

- 1) Montrer que (F) et (G) ont un seul point commun A.
- 2) Soit α l'abscisse de A. Montrer que $0.68 < \alpha < 0.69$.

- **12.** On considère la courbe (C) d'équation $y = f(x) = \frac{x}{x^2 + 1}$ et la droite (d) d'équation y = g(x) = x + 1. (Figure A)
 - (C) et (d) ont un seul point commun A d'abscisse α .



- **13.** *La figure ci-contre représente le graphe (C)* de la fonction g définie par $g(x) = x^5 + 2x - 2$ Soit f la fonction définie dans $]-\infty$; 1[par $f(x) = \frac{x}{x^5 + x - 2}$
 - 1) Démontrer que l'équation f(x) = -1, admet une solution unique α .
 - 2) *Vérifier que* : $0.81 < \alpha < 0.82$

