N S Slit interference

exploit symmetry

Law of VS.

$$
\begin{aligned}
& A=\left(\frac{A_{0}}{2} \cos \left(\frac{\delta}{2}\right)\right) \ell \\
& A=A_{0} \cos \left(\frac{\delta}{2}\right)
\end{aligned}
$$

$$
N=4
$$

$$
\frac{A_{0}}{4} \xrightarrow{\frac{A_{0}}{4} \xrightarrow{\frac{A_{0}}{4}} \xrightarrow{\frac{A_{0}}{4}}, ~}
$$

$$
\begin{aligned}
& 2 \frac{A_{0}}{4} \cos \left(\frac{\delta}{2}\right)+2 \frac{A_{0}}{4} \cos \left(\frac{\delta}{2}+\delta\right) \\
A= & 2 \frac{A_{0}}{4} \cos \left(\frac{\delta}{2}\right)+2 \frac{A_{0}}{4} \cos \left(\frac{3 \delta}{2}\right) ; N=4
\end{aligned}
$$

$$
N=6
$$

$$
\begin{gathered}
A=2 \frac{A_{0}}{6} \cos \left(\frac{\delta}{2}\right)+2 \frac{A_{0}}{6} \cos \left(\frac{3 \delta}{2}\right)+2 \frac{A_{0}}{6} \cos \left(\frac{5 \delta}{2}\right) ; N=6 \\
A=\sum_{i=1}^{N / 2} 2 \frac{A_{0}}{N} \cos \left(\left(i-\frac{1}{2}\right) \delta\right) ; \text { even } N \\
A_{-}^{2}=\left[\sum_{i=1}^{N / 2} \frac{2}{N} \cos \left(\left(i-\frac{1}{2}\right) \delta\right)\right]^{2} ; \text { even } N
\end{gathered}
$$

$$
\begin{aligned}
& \frac{I}{I_{0}}=\frac{A^{2}}{A_{0}^{2}}=\left[\sum_{i=1}^{2} \frac{2}{N} \cos \left(\left(i-\frac{1}{2}\right) \delta\right)\right]^{2} \text {; ever } N \\
& I=I_{0}\left[\sum_{i=1}^{N / 2} \frac{2}{N} \cos \left(\left(i-\frac{1}{2}\right) \delta\right)\right]^{2}, \text { even } N
\end{aligned}
$$

For odd N we recd a different solution.

$$
\begin{aligned}
& N=3 \\
& N=5
\end{aligned}
$$

$$
N=7
$$

$$
\begin{array}{r}
A=\frac{A_{0}}{7}+2 \frac{A_{0}}{7} \cos (\delta)+2 \frac{A_{0}}{7} \cos (2 \delta)+ \\
2 \frac{A_{0}}{7} \cos (3 \delta)
\end{array}
$$

N odd $A=\frac{A_{0}}{N}+\sum_{i=1}^{\frac{(N-1)}{2}} 2 \frac{A_{0}}{N} \cos (i \delta)$

$$
\begin{aligned}
& \frac{I}{I_{0}}=\frac{A^{2}}{A_{0}^{2}}=\left[\frac{A_{0}}{N}+\sum_{i=1}^{\left(\frac{N-1)}{2}\right)} \frac{2 \cos (i \delta)}{N}\right]^{2} \\
& I=I_{0}\left[\frac{A_{0}}{N}+\sum_{i=1}^{(N-1)} 2 \frac{\cos }{N}(i \delta)\right]^{2} ; N \text { od } d
\end{aligned}
$$

$\delta=k \Delta l=k d \sin \phi$ for both even and odd.

