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Exact Analytical Solution of a Lumped Model of the
Transient Convective-Radiative Cooling of a Hot

Spherical Body in an Environment

MOHAMMAD DANISH, SHASHI KUMAR, AND
SURENDRA KUMAR

Department of Chemical Engineering, Indian Institute of Technology
Roorkee, Roorkee, Uttarakhand, India

In this study the exact analytical solution of the lumped parameter model of a
nonlinear heat transfer process representing the transient convective-radiative cool-
ing of a spherical body has been obtained. The process is governed by a nonlinear
ordinary differential equation, and the exact analytical solution has been found in
the implicit form of an elementary transcendental function. The obtained exact ana-
lytical solution not only yields accurate results but also successfully simulates a
recent experimental study of cooling of metallic ball bearings by the combined mech-
anism of convection and radiation. In addition, the exact explicit solution for a sim-
plified case of the above problem, recently tackled by several researchers in various
approximate ways, has also been found. These exact solutions are quite appealing
since they are accurate and superior to the available approximate solutions, provide
better insight of the physical process, and can also serve as yardsticks for future
testing of the approximate solutions.

Keywords Ball bearings; Conduction; Convection; Exact analytical solution;
Mathematical modeling; Radiation

Introduction

Cooling of a body by the combined effect of convection and radiation is widely
encountered in many heat transfer operations. Some of the situations where surface
radiative and=or convective heat transfer processes play significant role are metal-
lurgical processes, radiation devices in outer space applications, heat transfer from
extended surfaces, dynamical thermal behavior of buildings, and cooling of
electronic components. For convenience, some of recently carried out studies are
outlined in Table I.

Many mathematical modeling approaches are available to portray the
above-mentioned unsteady convective-radiative heat transfer processes, starting
from the simple lumped parameter model to a more complex distributed parameter
model (Siegel and Howell, 1992; Campo and Blotter, 2000; Bejan and Krauss,
2003; Cortés et al., 2003; Modest, 2003; Su, 2004; Liao et al., 2006; Tan et al.,
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ët
,
a
n
d

B
a
rr
a
u
lt

2
0
1
0

E
x
p
er
im

en
ta
l
si
m
u
la
ti
o
n
o
f
a
d
ie
le
ct
ri
c

b
a
rr
ie
r
d
is
ch
a
rg
e
re
a
ct
o
r
fo
r
fi
n
d
in
g

th
e
tr
a
n
si
en
t
te
m
p
er
a
tu
re

p
ro
fi
le

a
ft
er

ig
n
it
io
n
a
n
d
sh
u
td
o
w
n

L
u
m
p
ed

p
a
ra
m
et
er

A
n
a
ly
ti
ca
l
so
lu
ti
o
n

1670

D
ow

nl
oa

de
d 

by
 [

In
di

an
 I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
R

oo
rk

ee
] 

at
 0

5:
33

 1
3 

D
ec

em
be

r 
20

13
 



2009; Kupiec and Komorowicz, 2010). The distributed parameter models of these
processes are represented by partial differential equations (PDEs) having nonlinear
boundary conditions and provide spatial and temporal details of the temperature
of the concerned body. However, the numerical solutions of thse PDEs are cumber-
some and time consuming, especially in repeated calculations. To overcome this
difficulty, various attempts have been made to propose different improved lumped
parameter models so as to obtain sufficiently accurate information with minimum
effort (Su and Cotta, 2001; Cortés et al., 2003; Su, 2004; Keshavarz and Taheri,
2007; Pontedeiro et al., 2008; Tan et al., 2009; Kupiec and Komorowicz, 2010).
The equations characterizing the lumped parameter models of these processes are
derived by performing some spatial averaging of the concerned PDEs of distributed
parameter models and these PDEs are rendered into nonlinear ordinary differential
equations (ODEs). In contrast to the distributed parameter model equations, the
lumped parameter model equations are mathematically tractable, however, they
provide only temporal details of the temperature of the body. Therefore, the choice
between these two approaches depends on the degree of accuracy and the level of
details required as well as on the effort required to solve these model equations.
In convection-radiation processes, the choice between the lumped and distributed
parameter models should be made only after properly evaluating the concerned total
Biot number BiT ¼ hT l

k

� �
, where l is the characteristic dimension of the body and hT

is the total heat transfer coefficient for the combined convection-radiation process
(hT¼ hcþ hr). It can be noted that the lumped parameter model is valid if BiT< 0.1
(Campo and Blotter, 2000; Tan et al., 2009).

In this work, efforts have been made to obtain the closed form exact analytical
solutions of the lumped parameter models of a nonlinear heat transfer process and
one of its simplified cases. The main heat transfer process and its simplified case basi-
cally describe the transient heat loss from a spherical body by the collective means of
convection and radiation. The governing equations for both situations are given by
nonlinear first-order ODEs constituting initial value problems (IVPs) (Siegel and
Howell, 1992; Bejan and Krauss, 2003; Modest, 2003; Su, 2004). To the best of
the authors’ knowledge, a closed form exact analytical solution for either of the
model equations is not available in the literature. However, the latter simpler case
has recently been investigated by several researchers (Ganji et al., 2007; Rajabi
et al., 2007; Domairry and Nadim, 2008) by using different approximate methods,
namely PM (perturbation method), HPM (homotopy perturbation method), and
HAM (homotopy analysis method), and the solutions were found in terms of some
finite series.

In addition, the simulation of a recently conducted experimental case study,
representing the transient cooling of a metal ball bearing by the combined mode
of convection and radiation (Campo and Blotter, 2000), has also been effectively
performed by the derived exact analytical solution of the main heat transfer process.

Mathematical Model of the Cooling of a Spherical Body

For the sake of completeness and brevity, the distributed parameter model for the
unsteady-state convective and radiative cooling of a spherical body is presented in
this section. The problem is stated as follows: A spherical body having radius R, den-
sity q, thermal conductivity k, and heat capacity cp is initially at a higher temperature
Ti, and at the outset of the experiment (t¼ 0), it is exposed to an environment at

Exact Solution for the Lumped Model of Cooling of a Spherical Body 1671
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temperature Tf and average radiation sink temperature Ts. The body is assumed to
be homogeneous, isotropic, and opaque, and due to the temperature gradient it
starts loosing heat energy by the superimposed effects of convection and radiation.
For this situation, the governing model equation can be derived by applying the
unsteady-state energy balance over a control element in the body and is given by
(Su, 2004; Liao et al., 2006):

qcp
@T

@t
¼ 1

r2
@

@r
kr2

@T

@r

� �
ð1Þ

The concerned initial condition (IC) and boundary conditions (BC) are:

IC : T ¼ Ti at t ¼ 0 8 r � R ð2aÞ

BC I : �k
@T

@r
¼ hcðT � Tf Þ þ r 2 ðT4 � T4

s Þ at r ¼ R 8 t > 0 ð2bÞ

BC II :
@T

@r
¼ 0 at r ¼ 0 8 t > 0 ð2cÞ

where hc is the convective heat transfer coefficient, and 2 and r are the emissivity of
the spherical body and Stefan-Boltzmann constant, respectively. In case of different
environment and sink temperatures, it is appropriate to introduce the following
adiabatic surface temperature, which simplifies the computational work (Liao
et al., 2006):

hcðTa � Tf Þ þ r 2 ðT4
a � T4

s Þ ¼ 0 ð3Þ

With the help of the above-defined adiabatic surface temperature (Ta) BC I becomes:

BC I : �k
@T

@r
¼ hcðT � TaÞ þ r 2 ðT4 � T4

a Þ at r ¼ R 8 t > 0 ð4Þ

Now introducing the following dimensionless variables:

h ¼ T

Ti
; g ¼ r

R
; ha ¼

Ta

Ti
; s ¼ at

R2
;Bic ¼

hcR

k
; and Nrc ¼

r 2 RT3
i

k

Equations (1), (2a), (2c), and (4) can easily be transformed into the dimensionless
forms given by Equations (5) and (6a)–(6c). a(¼ k=qcp) is the thermal diffusivity,
Bic is the Biot number for convection, and Nrc is the conduction-radiation para-
meter. One should note that the above definition of Bic ¼ hcR

k

� �
is based on the

one proposed by Liao et al. (2006), although there are also other definitions of

Bic ¼ hcR
3k

� �
(Campo and Blotter, 2000; Tan et al., 2009).

@h
@s

¼ 1

g2
@

@g
g2

@h
@g

� �
ð5Þ

IC : h ¼ 1 at s ¼ 0 8 g � 1 ð6aÞ

1672 M. Danish et al.
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BC I : � @h
@g

¼ Bicðh� haÞ þNrcðh4 � h4aÞ at g ¼ 18 s > 0 ð6bÞ

BC II :
@h
@g

¼ 0 at g ¼ 08 s > 0 ð6cÞ

For a body with large thermal conductivity and smaller dimensions, the spatial
temperature variations in it can be neglected and the lumped parameter model can be
used. However, this should be supported by the criteria BiT< 0.3, where

BiT ¼ ðhcþhrÞR
k

� �
is the overall Biot number and takes into account the Biot numbers

for convection and radiation (Campo and Blotter, 2000; Liao et al., 2006; Tan et al.,
2009). It should be noted that the definition of BiT used in the present study is based
on the one proposed by Liao et al. (2006) instead of the one given by Campo and
Blotter (2000). Due to this fact the lumped parameter model criteria reduces to

BiT< 0.3 instead of BiT< 0.1. hr ¼ r2ðT4�T4
a Þ

ðT�TaÞ

h i
is the radiative heat transfer

coefficient.
For a spherical body, the equation for the lumped parameter model is obtained

by using the following definition of the spatially averaged dimensionless temperature
(Su, 2004):

hav ¼ 3

Z 1

0

hg2dg ð7Þ

The above definition renders the earlier obtained PDE into a first-order nonlinear
ODE constituting an IVP. Thus, from Equations (5), (6b), (6c), and (7), one finally
gets the following dimensionless equation:

dhav
ds

¼ �3Bicðhav � haÞ � 3Nrcðh4av � h4aÞ ð8Þ

Similarly, the associated IC, i.e., Equation (6a), with the use of Equation (7), can be
expressed in terms of the spatially averaged temperature and attains the following form:

IC : hav ¼ 1 at s ¼ 0 8 g � 1 ð9Þ

Exact Analytical Solutions

In this section, the exact analytical solutions for both cases, i.e., (i) ha 6¼ 0 and (ii)
ha¼ 0, are obtained. In addition, an experimental case study is also fruitfully simu-
lated with the help of the exact analytical solution of the general case.

General Case (ha 6¼ 0)

After rearranging Equation (8) and integrating it with the help of Equation (9), one
gets:

1

Nrc

Z hav

1

dhav
Bic
Nrc

ðhav � haÞ þ ðh4av � h4aÞ
¼ �3

Z s

0

ds ð10Þ

Exact Solution for the Lumped Model of Cooling of a Spherical Body 1673
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The partial fraction decomposition of the left-hand side of Equation (10) yields the
following simplified form:

1

Nrc

� Z hav

1

A1dhav
ðhav � r1Þ

þ
Z hav

1

B1dhav
ðhav � r2Þ

þ
Z hav

1

ðC1hav þD1Þdhav
ðh2av � ðr3 þ r4Þhav þ r3r4Þ

�
¼ �3

Z s

0

ds

ð11Þ

where r1, r2, r3, and r4 are the roots of the quartic equation Bic
Nrc

ðhav � haÞþ
ðh4av � h4aÞ ¼ 0 and the explicit expressions of these roots are given in Appendix I.
From Appendix I it is revealed that r1 is real and positive, r2 is real and negative,
and r3 and r4 are complex conjugates; this fact is true for all the possible combina-
tions of ha and

Bic
Nrc

. A1, B1, C1, and D1 are the constants appeared during the partial
fraction decomposition, and their expressions are given in Appendix II.

Now, expressing the complex conjugate pair r3 and r4 as r3¼ aþ ib and r4¼
a� ib, and integrating Equation (11), one obtains the following equation:

1

Nrc

�
ðD1 þ C1aÞ

b
tan�1 hav � a

b

� �
þ 1

2
C1ln½ðhav � aÞ2 þ b2�

þ A1ln½hav � r1� þ B1ln½hav � r2�
�hav
1

¼ �3

Z s

0

ds ð12Þ

After simplifying the above equation, the following exact analytical solution is
found:

1

Nrc

ðD1 þ C1aÞ
b

tan�1 hav � a

b

� �
� tan�1 1� a

b

� �� ��

þ 1

2
C1ln

ðhav � aÞ2 þ b2

ð1� aÞ2 þ b2

" #

þA1ln
hav � r1
1� r1

� �
þ B1ln

hav � r2
hav � r2

� ��
¼ �3s ð13Þ

Using Equation (13), the transient profiles of hav have been drawn in Figure 1 for
various values of Bic, Nrc, and ha, which match exactly with their numerical counter-
parts and thus validate the above exact analytical solution. It can be verified that the
selected values of the parameters (Bic, Nrc, and ha) satisfy the lumped parameter
model criteria, i.e., BiT (¼BicþBir)< 0.3.

Moreover, in the case of heating of the spherical body by convection and=or
radiation, minor changes have to be made in Equation (2b) such that the constant
ambient temperature is greater than the object’s temperature (Tf>T�Ti). The
obtained transient temperature profile will be just the reverse of the one shown in
Figure 1; in other words, a mirror image showing increasing trend of the temperature
profile will be obtained.
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Simulation of an Experimental Case Study

In this subsection, the practical applicability of the just obtained exact analytical sol-
ution (Equation (13)) has been demonstrated by simulating an existing experimental
study of cooling of a metal ball bearing by the modes of convection and radiation
(Campo and Blotter, 2000). The use of the lumped parameter model for this experi-
mental study was shown to be justified by Campo and Blotter (2000), i.e.,

BiT ¼ ðhcþhrÞR
k

h i
< 0:3. Later, we also verified this condition. Therefore, the application

of the presently derived exact analytical solution is justified.
Out of the two tests carried out by Campo and Blotter (2000), the data of test 1

corresponding to cooling at a higher temperature have been selected in this work,
although the experimental results of test 2 can also be simulated in a similar fashion.
Necessary details of test 1 are summarized in Table II. and complete details can be

Figure 1. Transient profiles of dimensionless temperature for various values of Nrc, Bic, and
ha; solid lines: exact analytical solution; open circles: numerical solution. (Figure provided
in color online.)

Table II. Experimental data used for simulation

Variable=Parameter Notation Value

Source: Campo and Blotter (2000)
Initial temperature of ball bearing Ti 823K
Constant room air temperature Tf 302K
Radiation sink temperature Ts 302K
Diameter of ball bearing D 0.953� 10�2m
Emissivity of ball bearing 2 0.7

Source: Bejan and Kraus (2003)
Density of ball bearing q 7865 kg.m�3

Specific heat of ball bearing cp 460 J � kg�1 �K�1

Thermal conductivity of ball bearing k 47W �m�1 �K�1

Exact Solution for the Lumped Model of Cooling of a Spherical Body 1675
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found in the original work (Campo and Blotter, 2000). The parameters q, cp, and k
were not given by Campo and Blotter (2000), hence, in the present study, their values
have been taken from Bejan and Kraus (2003); these values do not affect the results
in any significant way and the results remain almost exactly the same.

The heat transfer process involved in the experimental study of Campo and
Blotter (2000) is governed by the same model equation, i.e., Equations (8) and (9),
however, the convective heat transfer coefficient is now a weak nonlinear
function of the temperature and is given by the following relation (Campo and
Blotter, 2000):

hcðTÞ ¼ 9:03þ 2:95ðT � 302Þ0:25 ðW=m2 KÞ ð14Þ

With the introduction of the above expression for convective heat transfer
coefficient, the lumped parameter model equation attains the following dimensional
form:

qcp
R

3

dT

dt
¼ � 9:03þ 2:95ðT � 302Þ0:25

h i
ðT � TaÞ � r 2 ðT4 � T4

a Þ ð15aÞ

IC : Tð0Þ ¼ Ti ¼ 823K ð15bÞ

Now, to show the applicability of the derived analytical solution (Equation (13)),
the average value of the convective heat transfer coefficient, hcav, over the concerned
temperature range (Ti�Ta) is used in place of its temperature-dependent
form (Equation (14)). The average value of the convective heat transfer coefficient
is found to be 20.3051W=m2K and has been evaluated by using the following
relation:

hcav ¼
1

ðTi � TaÞ

Z Ti

Ta

hcðTÞdT ð16Þ

By replacing the temperature-dependent hc(T) with its average value hcav in
Equation (15a), one gets the following equation:

qcp
R

3

dT

dt
¼ �hcavðT � TaÞ � r 2 ðT4 � T4

a Þ ð17Þ

Equation (17) is now forced to attain a dimensionless form similar to
Equation (8) by using the previously defined dimensionless variables. In doing so,
the values of ha, Bic, and Nrc are found to be 0.366950, 0.002059, and 0.002243,
respectively. One should note that the value of Bic is based on hcav. In addition,
the maximum values of hc and hr, i.e., at the beginning of the cooling of the
bearing, are 23.1239 and 34.3099W=m2 K, respectively, and corresponding to these
values, the maximum value of the total Biot number (BiT) is 0.005823, which satisfies
the lumped parameter model criteria (BiT< 0.3). Hence, the assumption of the
lumped parameter model is valid for whole of the duration of this experimental
study.

Now, corresponding to the above values of ha, Bic, and Nrc, the four roots are
found to be: r1(¼ ha)¼ 0.366950, r2¼�1.076538, r3¼ 0.354794þ 0.879018i, and
r4¼ 0.354794� 0.879018i. Substituting these values in Equation (13), one obtains
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the following equation:

404:24805þ 183:80592 tan�1½0:40362� 1:13763hav� þ 399:70488 ln½hav � 0:36695�
� 145:10981 ln½0:77267þ ðhav � 0:35479Þ2�
� 109:48525 ln½hav þ 1:07654� ¼ �3s

ð18Þ

Comparison among Analytical, Numerical, and Experimental Results

A comparison among the analytical, numerical, and experimental results has been
made by plotting the respective temperature profiles in Figure 2. The numerical
results have been found by numerically solving Equations (15a) and (15b) with the
help of the inbuilt command ‘‘NDSolve’’ of Mathematica software. As evident from
Figure 2, the numerically obtained profiles depict close agreement with the exper-
imentally obtained profiles of Campo and Blotter (2000) (one should note that some
of the experimental readings in our work have been obtained from Figure 2 of
Campo and Blotter (2000) with the help of the user-friendly software Plot Digitizer,
available free online, as only a few values were tabulated in Table 1 of Campo and
Blotter (2000)).

Beside these two temperature profiles, Figure 2 also shows the temperature pro-
files obtained by using the analytical and numerical solutions of the modified equa-
tion (Equation (17)). From this figure, it is clear that a close match exists between
these two solutions and thus signifies the correctness of the analytical solution.
Moreover, like the numerical results of Equation (15a), the results of Equation
(17) obtained by either the analytical solution (Equation (18)) or the numerical
method, also match well with the experimental data. This validates the use of the
analytical solution and the average convective heat transfer coefficient, hcav. Hence,

Figure 2. Transient temperature profiles for the cooling of a metal ball bearing by convection
and radiation mechanisms (ha¼ 0.366950, Nrc¼ 0.002243, Bic¼ 0.002059). (Figure provided in
color online.)
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it can be concluded that no appreciable change in the results is observed if one mod-
els the above heat transfer process by using Equation (17) instead of Equation (15a).

Simplified Case: (ha¼ 0)

This particular situation is characterized by the fact that both the surroundings and
the sink temperatures are the same and equal to zero, i.e., Ts¼Tf¼ 0. From Equa-
tion (3) this implies that Ta¼ ha¼ 0. This situation may arise in outer space or in a
vacuum. The model equation of this specific situation has been solved by several
researchers by using various approximate methods, e.g., PM, HPM, and HAM
(Ganji et al., 2007; Rajabi et al., 2007; Domairry and Nadim, 2008). However, the
model equation as considered by these researchers contains a term corresponding
to convection and is therefore invalid, since at ha¼ 0 (absolute zero temperature
of the surroundings), there will be no convective heat transfer, i.e., Bic¼ 0. Due to
this reason we have not considered their model equation, rather, we have presented
the appropriate model equation for this situation (ha¼ 0). This model equation is
given below in dimensionless form along with the associated IC (it should be noted
that as opposed to the model equation considered by Ganji et al. (2007), Rajabi et al.
(2007), and Domairry and Nadim (2008), the following model equation does not
contain the convective heat transfer term because Bic¼ 0):

dhav
ds

þ 3Nrch
4
av ¼ 0 ð19aÞ

IC : havðs ¼ 0Þ ¼ 1 ð19bÞ

Figure 3. Transient profiles of dimensionless temperature at Bic¼ 0 and ha¼ 0 for various
values of Nrc; solid lines: exact analytical solution; open circles: numerical solution. (Figure
provided in color online.)
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Integrating the above equation after separating the variables and using IC, one
finds the following exact analytical solution:

hav ¼
1

ð1þ 9NrcsÞ1=3
ð20Þ

Comparison between Analytical and Numerical Results

For the several values of parameter Nrc (¼ 0, 0.1, 0.2, 0.3), the dimensionless tem-
perature profiles obtained by using the exact analytical solution (Equation (20))
and the numerical solution are plotted in Figure 3. These values of Nrc satisfy the
lumped parameter model criteria. Figure 3 shows agreement between these profiles,
which validates the presently obtained exact analytical solution.

Summary and Conclusions

A closed form exact analytical solution of the lumped parameter model of a non-
linear heat transfer process, portraying the transient cooling of a spherical body
by the combined mechanism of convection and radiation, has been obtained in an
implicit form. The obtained exact analytical solution not only shows excellent har-
mony with its numerical counterparts but also successfully imitates the results of a
recently conducted experimental study that depicts the cooling of a metal ball bear-
ing by the combined mechanism of convection and radiation. Use of the lumped
parameter model for this experimental study has been found to be valid. While simu-
lating the experimental case study, it has been observed that the convective heat
transfer coefficient, possessing temperature-dependent nonlinearity, can easily be
replaced by its average value over the whole of the concerned temperature domain
without affecting the results in any significant way.

Moreover, the model equation of a simplified case of this problem, recently
investigated by various researchers in an approximate manner, has also been exactly
solved. Here also, the exact analytical solution shows commendable agreement with
the numerical results.

These exact solutions offer a better understanding of the physical process and
are found to be valid for all parameter ranges. In addition, these can be very useful
in validating the approximate solutions.

Nomenclature

a, b real and imaginary parts of the complex roots r3 and r4
A1, B1, C1, D1 constants appearing in the partial fraction decomposition
Bic Biot number for convection (¼ hcR=k)
Bir Biot number for radiation (¼ hrR=k)
BiT total Biot number for convection and radiation ¼ ðhcþhrÞR

k

� �
cp specific heat of the body, J=kg �K
C1 constant of integration
D diameter of the ball bearing (¼ 2R), m
hc convective heat transfer coefficient, J=s �m2 �K
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hr radiative heat transfer coefficient ¼ r2ðT4�T4
a Þ

ðT�TaÞ

� �
, J=s �m2 �K

hT combined convective-radiative heat transfer coefficient
(¼ hcþ hr), J=s �m2 �K

k thermal conductivity of the body, W=m �K
Nrc dimensionless conduction-radiation parameter, r 2 RT3

i =k
r radial coordinate, m
ri ith root
R radius of the spherical body, m
t time, s
T temperature, K
Ta adiabatic surface temperature, K
Ti initial temperature of the body, K

Greek Letters
a thermal diffusivity (¼ k=qcp), m

2=s
e dimensionless parameter (¼Nrc=Bic)
2 emissivity of ball bearing
g dimensionless radial coordinate (¼ r=R)
h dimensionless temperature (¼T=Ti)
ha dimensionless adiabatic surface temperature (¼Ta=Ti)
q density of the spherical body, kg=m3

r Stefan-Boltzmann constant (¼ 5.669� 10�8), W=m2 �K4

s dimensionless time (¼ at=R2)

Subscripts
av average
f surrounding fluid
i initial
max maximum
s sink
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Appendix I

Roots of the quartic equation Bic
Nrc

ðhav � haÞ þ ðh4av � h4aÞ ¼ 0 are given as follows:

r1 ¼ ha

r2 ¼
1

3
�ha �

161=3eh2a
c1=3

þ c1=3

21=3e

 !

r3 ¼
1

3
�ha þ

21=3 1þ i
ffiffiffi
3

p� �
eh2a

c1=3
�

1� i
ffiffiffi
3

p� �
c1=3

161=3e

 !

r4 ¼
1

3
�ha þ

21=3 1� i
ffiffiffi
3

p� �
eh2a

c1=3
�

1þ i
ffiffiffi
3

p� �
c1=3

161=3e

 !

where c ¼ �27e2 � 20e3h3a þ 3
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27e4 þ 40e5h3a þ 16e6h6a

q� �
and e ¼ Nrc

Bic
. Following

points can be noted regarding the properties of the roots:

i. The first root is known a priori and has a real positive value, i.e., r1¼ ha(> 0).
ii. No root is repeated (multiplicity of all the roots is one).
iii. The second root is negative and real (say, r2), whereas the third and fourth roots

(r3 and r4) are complex conjugates.
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Appendix II

A1 ¼
1

ðr1 � r2Þ ðr21 � ðr3 þ r4Þr1 þ r3r4Þ
� � ¼ 1

ðr1 � r2Þ ðr1 � aÞ2 þ b2Þ
� �

B1 ¼
1

ðr2 � r1Þ ðr22 � ðr3 þ r4Þr2 þ r3r4Þ
� � ¼ 1

ðr2 � r1Þ ðr2 � aÞ2 þ b2Þ
� �

C1 ¼
r1 þ r2 � r3 � r4

ðr3 � r1Þðr3 � r2Þðr1 � r4Þðr2 � r4Þ
¼ r1 þ r2 � 2a

ðr1 � aÞ2 þ b2
� �

ðr2 � aÞ2 þ b2
� �

D1 ¼
r1r2 � r1r3 � r2r3 þ r23 � r1r4 � r2r4 þ r3r4 þ r24

ðr3 � r1Þðr3 � r2Þðr1 � r4Þðr2 � r4Þ
¼ r1r2 � 2ðr1 þ r2Þaþ 3a2 � b2

ðr1 � aÞ2 þ b2
� �

ðr2 � aÞ2 þ b2
� �
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