Find the parameters required and then sketch the graph of each rational function below:

1. $f(x)=\frac{2 x+6}{-6 x+3}$.
y-intersection: 2
Zeroes $x=-3$:
Poles p: $\mathrm{x}=\frac{1}{2}$
and
Vertical Asymptotes $\mathrm{x}=\frac{1}{2}$
$\lim _{x \rightarrow \infty} f(x)=-\frac{1}{3}$ and
Horizontal Asymptotes: $\mathrm{y}=-\frac{1}{3}$
2. $f(x)=\frac{4 x-4}{x+2}$.
y-intersection: -2
Zeroes $x=1$:
Poles p: $\mathrm{x}=-2$
and

$\lim _{x \rightarrow \infty} f(x)=4$
and
Horizontal Asymptotes: $\mathrm{y}=4$

Vertical Asymptotes $\mathrm{x}=\mathbf{- 2}$

[^0]3. $f(x)=\frac{1-2 x}{2 x+3}$.
y-intersection: $\frac{1}{3}$
Zeroes $x=\frac{1}{2}$:
Poles p: $\mathrm{x}=-\frac{3}{2}$
and
Vertical Asymptotes $\mathrm{x}=-\frac{3}{2}$
$\lim _{\substack{x \rightarrow \infty \\ \text { and }}} f(x)=-1$
Horizontal Asymptotes: $\mathrm{y}=-1$
4. $f(x)=\frac{4-3 x}{x+7}$.
y-intersection: $\frac{4}{7}$
Zeroes $x=\frac{4}{3}$:
Poles p: $\mathrm{x}=-7$
and
Vertical Asymptotes $\mathrm{x}=-7$
$\lim _{x \rightarrow \infty} f(x)=-3$
and
Horizontal Asymptotes: $\mathrm{y}=-3$
5. $f(x)=\frac{18}{(x-3)^{2}}$.
y-intersection: 2
Zeroes $x=$ none:

Poles p:x $=3$
and
Vertical Asymptotes $\mathrm{x}=3$
$\lim _{x \rightarrow \infty} f(x)=0$
and
Horizontal Asymptotes: $\mathrm{y}=0$
6. $f(x)=-\frac{4}{(x-2)^{2}}$.
y-intersection: - 1
Zeroes $x=$ none:
Poles p:x=2
and
Vertical Asymptotes $\mathrm{x}=\mathbf{2}$
$\lim _{x \rightarrow \infty} f(x)=0$
Horizontal Asymptotes: y $=0$

2 RATIONAL FUNCTIONS

7. $f(x)=\frac{x-3}{x^{2}-1}$.
y-intersection: 3
Zeroes $x=3$:

Poles p : $\mathrm{x}= \pm 1$
and
Vertical Asymptotes $\mathrm{x}= \pm 1$
$\lim _{x \rightarrow \infty} f(x)=0$
and
Horizontal Asymptotes: y $=0$
8. $f(x)=\frac{x+4}{x^{2}-4}$.
y-intersection: - 1
Zeroes $x=-4$:
Poles p: $\mathrm{x}= \pm 2$
and
Vertical Asymptotes $\mathrm{x}= \pm \mathbf{2}$
$\lim _{x \rightarrow \infty} f(x)=0$
Horizontal Asymptotes: y $=0$
9. $f(x)=\frac{x-2}{x^{2}-x-6}$.
y-intersection: $\frac{1}{3}$
Zeroes $x=2$:
Poles p: $\mathrm{x}=-2,3$
and
Vertical Asymptotes $\mathrm{x}=\mathbf{- 2 , 3}$
$\lim _{\substack{x \rightarrow \infty \\ \text { and }}} f(x)=0$
Horizontal Asymptotes: y $=0$
10. $f(x)=\frac{x+1}{x^{2}+2 x-3}$.
y-intersection: $-\frac{1}{3}$
Zeroes $x=-1$:
Poles, $\mathrm{p}: \mathrm{x}=-3,1$
and
Vertical Asymptotes $\mathrm{x}=-3,1$
$\lim _{x \rightarrow \infty} f(x)=0$
and
Horizontal Asymptotes: $\mathrm{y}=0$
11. $f(x)=\frac{3 x+6}{x^{2}+2 x-8}$.
y-intersection: $-\frac{3}{4}$
Zeroes $x=-2$:
Poles p: $\mathrm{x}=-4,2$
and
Vertical Asymptotes $\mathrm{x}=-\mathbf{4}, \mathbf{2}$
$\lim _{\substack{x \rightarrow \infty \\ \text { and }}} f(x)=0$
Horizontal Asymptotes: y $=0$
12. $f(x)=\frac{2 x-4}{x^{2}+x-2}$
y-intersection: 2
Zeroes $x=2$:
Poles p: $\mathrm{x}=-2,1$
and
Vertical Asymptotes $\mathrm{x}=\mathbf{- 2 , 1}$
$\lim _{x \rightarrow \infty} f(x)=0$
and
Horizontal Asymptotes: $\mathrm{y}=0$
13. $f(x)=\frac{(x-1)(x+2)}{(x+1)(x-3)}$.
y-intersection: $\frac{2}{3}$
Zeroes $x=-2,1$:
Poles p:x $=-1,3$
and
Vertical Asymptotes $\mathrm{x}=-1,3$
$\lim _{x \rightarrow \infty} f(x)=1$
and
Horizontal Asymptotes: $\mathrm{y}=1$
14. $f(x)=\frac{2 x(x+2)}{(x-1)(x-4)}$.
y-intersection: 0
Zeroes $x=-2,0$:
Poles p: $\mathrm{x}=1,4$
and
Vertical Asymptotes $\mathrm{x}=1,4$
$\lim _{x \rightarrow \infty} f(x)=2$
and
Horizontal Asymptotes: $\mathrm{y}=2$
15. $f(x)=\frac{x^{2}-2 x+1}{x^{2}+2 x+1}$.
y-intersection: 1
Zeroes $x=1$:
Poles $\mathrm{p}: \mathrm{x}=-1$
and
Vertical Asymptotes $\mathrm{x}=-1$
$\lim _{\substack{x \rightarrow \infty \\ \text { and }}} f(x)=1$
Horizontal Asymptotes: y $=1$
16. $f(x)=\frac{2 x^{2}+10 x-12}{x^{2}+x-6}$.
y-intersection: 2
Zeroes $x=-6,1$:
Poles p: x $=-3,2$
and
Vertical Asymptotes $\mathrm{x}=-\mathbf{3 , 2}$
$\lim _{x \rightarrow \infty} f(x)=2$
and
Horizontal Asymptotes: y $=2$
17. $f(x)=\frac{2 x^{2}+2 x-4}{x^{2}+x}$.
y-intersection: none
Zeroes $x=-2,1$:
Poles p: $\mathrm{x}=-1,0$
and
Vertical Asymptotes $\mathrm{x}=-\mathbf{1}, \mathbf{0}$
$\lim _{\substack{x \rightarrow \infty \\ \text { and }}} f(x)=\mathbf{2}$
Horizontal Asymptotes: y $=2$
18. $f(x)=\frac{x^{2}+3 x}{x^{2}-x-6}$.
y-intersection: 0
Zeroes $x=-3,0$:

Poles p:x $=-2,3$
and
Vertical Asymptotes $\mathrm{x}=\mathbf{- 2 , 3}$
$\lim _{x \rightarrow \infty} f(x)=1$
and
Horizontal Asymptotes: $\mathrm{y}=1$

[^0]: Name: ANSWERS
 Date: ANSWERS
 $x \overline{\bar{O}}-2$ ar . Monteagudo 51

