2 RATIONAL FUNCTIONS

Find the parameters required and then sketch the graph of each rational function below:

1.
$$f(x) = \frac{2x+6}{-6x+3}$$
.
y-intersection: 2
Zeroes $x = -3$:
Poles $\mathbf{p} : \mathbf{x} = \frac{1}{2}$
and
Vertical Asymptotes $\mathbf{x} = \frac{1}{2}$
 $\lim_{x \to \infty} f(x) = -\frac{1}{3}$
Horizontal Asymptotes: $\mathbf{y} = -\frac{1}{3}$
2. $f(x) = \frac{4x-4}{x+2}$.
y-intersection: -2
Zeroes $x = 1$:
Poles $\mathbf{p} : \mathbf{x} = -2$
and
Vertical Asymptotes $\mathbf{x} = -2$
 $\lim_{x \to \infty} f(x) = 4$
 and
Horizontal Asymptotes: $\mathbf{y} = 4$
 $\lim_{x \to \infty} f(x) = 4$
and
Horizontal Asymptotes: $\mathbf{y} = 4$
 $\lim_{x \to \infty} f(x) = 4$
 and
Horizontal Asymptotes: $\mathbf{y} = 4$
Name: ANSWERS
Date: ANSWERS
 $x = \frac{1}{2}$
 $x = -\frac{1}{2}$
 $x = -\frac{1}{2}$

2 RATIONAL FUNCTIONS

3.
$$f(x) = \frac{1-2x}{2x+3}$$

y-intersection: $\frac{1}{3}$
Zeroes $x = \frac{1}{2}$:
Poles $\mathbf{p} : \mathbf{x} = -\frac{3}{2}$
and
Vertical Asymptotes $\mathbf{x} = -\frac{3}{2}$

$$\lim_{x \to \infty} f(x) = -1$$

and

Poles $\mathbf{p} : \mathbf{x} = -\frac{3}{2}$ and Vertical Asymptotes $\mathbf{x} = -\frac{3}{2}$ $\lim_{x \to \infty} f(x) = -1$ and Horizontal Asymptotes: $\mathbf{y} = -1$ $x) = \frac{4-3x}{x+7}.$

4.
$$f(x) = \frac{4-3x}{x+7}$$
.
y-intersection: $\frac{4}{7}$
Zeroes $x = \frac{4}{3}$:
Poles $\mathbf{p} : \mathbf{x} = -7$
and
Vertical Asymptotes $\mathbf{x} = -7$

$$\lim_{x \to \infty} f(x) = -3$$

and
Horizontal Asymptotes: $\mathbf{y} = -3$
Name: ANSWERS
Date: ANSWERS
Omar G. Monteagudo 52

5.
$$f(x) = \frac{18}{(x-3)^2}$$
.
y-intersection: 2
Zeroes $x =$ none:
Poles $\mathbf{p} : \mathbf{x} = 3$
and
Vertical Asymptotes $\mathbf{x} = 3$

$$\lim_{\substack{x \to \infty \\ a \to a \\ a \to a \\ d}} f(x) = 0$$

 $a \to a \to a \\ d \\ Horizontal Asymptotes: \mathbf{y} = 0$
6. $f(x) = -\frac{4}{(x-2)^2}$.
y-intersection: -1
Zeroes $x =$ none:
Poles $\mathbf{p} : \mathbf{x} = 2$
and
Vertical Asymptotes $\mathbf{x} = 2$

$$\lim_{\substack{x \to \infty \\ a \to a \\ d \\ d \\ Horizontal Asymptotes: \mathbf{y} = 0}$$

7.
$$f(x) = \frac{x-3}{x^2-1}$$
.
y-intersection: 3
Zeroes $x = 3$:
Poles $\mathbf{p} : \mathbf{x} = \pm 1$
and
Vertical Asymptotes $\mathbf{x} = \pm 1$
 $\lim_{x \to \infty} f(x) = \mathbf{0}$
and
Horizontal Asymptotes: $\mathbf{y} = \mathbf{0}$
8. $f(x) = \frac{x+4}{x^2-4}$.
y-intersection: -1
Zeroes $x = -4$:
Poles $\mathbf{p} : \mathbf{x} = \pm 2$
and
Vertical Asymptotes $\mathbf{x} = \pm 2$
 $\lim_{x \to \infty} f(x) = \mathbf{0}$
and
Horizontal Asymptotes: $\mathbf{y} = \mathbf{0}$

9.
$$f(x) = \frac{x-2}{x^2-x-6}$$
.
 y -intersection: $\frac{1}{3}$
Zeroes $x = 2$:
Poles $\mathbf{p} : \mathbf{x} = -2, 3$
and
Vertical Asymptotes $\mathbf{x} = -2, 3$
 $\lim_{x \to \infty} f(x) = \mathbf{0}$
and
Horizontal Asymptotes: $\mathbf{y} = \mathbf{0}$
10. $f(x) = \frac{x+1}{x^2+2x-3}$.
 y -intersection: $-\frac{1}{3}$
Zeroes $x = -1$:
Poles , $\mathbf{p} : \mathbf{x} = -3, 1$
and
Vertical Asymptotes $\mathbf{x} = -3, 1$
 $\lim_{x \to \infty} f(x) = \mathbf{0}$
and
Horizontal Asymptotes: $\mathbf{y} = \mathbf{0}$

11.
$$f(x) = \frac{3x+6}{x^2+2x-8}$$
.
y-intersection: $-\frac{3}{4}$
Zeroes $x = -2$:
Poles $\mathbf{p} : \mathbf{x} = -4, 2$
and
Vertical Asymptotes $\mathbf{x} = -4, 2$

$$\lim_{x \to \infty} f(x) = \mathbf{0}$$

and
Horizontal Asymptotes: $\mathbf{y} = \mathbf{0}$
12.
$$f(x) = \frac{2x-4}{x^2+x-2}$$
.
y-intersection: 2
Zeroes $x = 2$:
Poles $\mathbf{p} : \mathbf{x} = -2, 1$
and
Vertical Asymptotes $\mathbf{x} = -2, 1$

$$\lim_{\substack{x \to \infty \\ x^2+x} = \mathbf{0}}$$

Horizontal Asymptotes: $\mathbf{y} = \mathbf{0}$

13.
$$f(x) = \frac{(x-1)(x+2)}{(x+1)(x-3)}$$
.
y-intersection: $\frac{2}{3}$
Zeroes $x = -2, 1$:
Poles $\mathbf{p} : \mathbf{x} = -1, 3$
and
Vertical Asymptotes $\mathbf{x} = -1, 3$

$$\lim_{x \to \infty} f(x) = 1$$

and
Horizontal Asymptotes: $\mathbf{y} = 1$
14. $f(x) = \frac{2x(x+2)}{(x-1)(x-4)}$.
y-intersection: 0
Zeroes $x = -2, 0$:
Poles $\mathbf{p} : \mathbf{x} = 1, 4$
and
Vertical Asymptotes $\mathbf{x} = 1, 4$

$$\lim_{x \to \infty} f(x) = 2$$

and
Horizontal Asymptotes: $\mathbf{y} = 2$

15.
$$f(x) = \frac{x^2 - 2x + 1}{x^2 + 2x + 1}$$
.
y-intersection: 1
Zeroes $x = 1$:
Poles $\mathbf{p} : \mathbf{x} = -1$
and
Vertical Asymptotes $\mathbf{x} = -1$

$$\lim_{x \to \infty} f(x) = 1$$

and
Horizontal Asymptotes: $\mathbf{y} = 1$
16.
$$f(x) = \frac{2x^2 + 10x - 12}{x^2 + x - 6}$$
.
y-intersection: 2
Zeroes $x = -6, 1$:
Poles $\mathbf{p} : \mathbf{x} = -3, 2$
and
Vertical Asymptotes $\mathbf{x} = -3, 2$

$$\lim_{x \to \infty} f(x) = 2$$

and
Horizontal Asymptotes: $\mathbf{y} = 2$

17.
$$f(x) = \frac{2x^2 + 2x - 4}{x^2 + x}$$
.

y-intersection: **none**

Zeroes x = -2, 1:

Poles $\mathbf{p}: \mathbf{x} = -1, \mathbf{0}$ and Vertical Asymptotes $\mathbf{x} = -1, \mathbf{0}$

 $\lim_{\substack{x\to\infty\\\text{and}}} f(x) = \mathbf{2}$ and Horizontal Asymptotes: $\mathbf{y} = \mathbf{2}$

18.
$$f(x) = \frac{x^2 + 3x}{x^2 - x - 6}$$
.
y-intersection: 0
Zeroes $x = -3, 0$:
Poles $\mathbf{p} : \mathbf{x} = -2, 3$
and
Vertical Asymptotes $\mathbf{x} = -2, 3$

$$\lim_{x \to \infty} f(x) = 1$$

and
Horizontal Asymptotes: $\mathbf{y} = 1$

.

.

· · · · · · · · ·

.

.

· · · · · · · · · · ·

.

· · · · · · · · · · ·

.

· · · · · · · · · · · ·

.

.

.

.

. . .

. .

.

: :

Name: ANSWERS

Date: **ANSWERS**

Omar G. Monteagudo 59