
CHAPTER NINE

Circle Geometry

Circles have already been studied using coordinate methods, and circles were
essential in the development of the trigonometric functions. Many important
properties of circles, however, remain to be developed, and the methods of Eu-
clidean geometry are particularly suited to this task — first, the circle is easily
defined geometrically in terms of centre and radius, compasses being designed
to implement this definition, and secondly, angles are handled far more easily in
Euclidean geometry than in coordinate geometry.

Study Notes: Although this material may be familiar from earlier years, the
emphasis now is less on numerical work and more on the logical development of
the theory and on its applications to the proof of further results. Most students
will therefore find the chapter rather demanding. Sections 9A–9D deal with angles
at the centre and circumference of circles. Three difficult converse theorems here
are quite new — these converses concern the circumcircle of a right triangle,
and two tests for the concyclicity of four points. Sections 9E–9G then examine
tangents to circles and the angles they form with diameters and chords.

As in the previous chapter, all the course theorems have been boxed. Some proofs
are written out in the notes, and some are presented in structured questions placed
at the start of the following development section. All these proofs are important
— working through these proofs is an essential part of the course.

Some of the Extension sections of these exercises are longer than normal, but
3 Unit students should be reassured that these questions, as always, are beyond
the standards of the 3 Unit HSC papers. The 4 Unit HSC papers usually contain
a difficult geometry question, and many of the standard results associated with
these questions have therefore been included in the Extension sections.

9 A Circles, Chords and Arcs
The first group of theorems concern angles at the centre of a circle and their
relationship with chords and arcs. The section ends with the crucial theorem that
any set of three non-collinear points lie on a unique circle. First, some definitions:

centre

radius

secant

tangent

chord

diameter

concentric circles

ISBN: 978-1-107-61604-2 
Photocopying is restricted under law and this material must not be transferred to another party 

© Bill Pender, David Sadler, Julia Shea, Derek Ward 2012 Cambridge University Press



� �CHAPTER 9: Circle Geometry 9A Circles, Chords and Arcs 345

1

CIRCLE, CENTRE, RADIUS, TANGENT, SECANT, CHORD, DIAMETER:
• A circle is the set of all points that are a fixed distance (called the radius)

from a given point (called the centre).
• A radius is the interval joining the centre and any point on the circle.
• A tangent is a line touching a circle in one point.
• A secant is the line through two distinct points on a circle.
• A chord is the interval joining two distinct points on a circle.
• A diameter is a chord through the centre.
• Two circles with a common centre are called concentric.

subtended
angle

A

B

P

Subtended angles: We shall speak of subtended angles through-
out this chapter, particularly angles subtended by chords of
circles at the centre and at a point on the circumference.

2
ANGLES SUBTENDED BY AN INTERVAL: The angle sub-

tended at a point P by an interval AB is the an-
gle � APB formed at P by joining AP and BP .

A Chord and the Angle Subtended at the Centre: The straightforward congruence proofs
of this theorem and its converse have been left to the following exercise.

3
COURSE THEOREM: In the same circle or in circles of equal radius:
• Chords of equal length subtend equal angles at the centre.
• Conversely, chords subtending equal angles at the centre have equal lengths.

O

A

B X

Y

� AOB = � XOY

(equal chords AB and XY subtend
equal angles at the centre O).

O

A

B

X

Y
θ

θ

AB = XY

(chords subtending equal angles
at the centre O are equal).

WORKED EXERCISE: In the diagram below, the chords AB, BC and CD have equal
lengths. Prove that AC = BD = 5, then find AD.

5

O

A
B

C

D

SOLUTION: The three equal chords subtend equal angles at the centre O,
so � AOB = � BOC = � COD = 30◦,
and � AOC = 60◦.
But OA = OC (radii),
so �OAC is equilateral, and AC = 5.
Similarly, �OBD is equilateral, and BD = 5.

Secondly, AD2 = 52 + 52 (Pythagoras),
hence AD = 5

√
2 .
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Arcs, Sectors and Segments: Here again are the basic definitions.

4

ARCS, SECTORS AND SEGMENTS:
• Two points on a circle dissect the circle into a major arc and a minor arc,

called opposite arcs.
• Two radii of a circle dissect the region inside the circle into a major sector and

a minor sector, called opposite sectors.
• A chord of a circle dissects the region inside the circle into a major segment

and a minor segment, called opposite segments.

minor arc

major arc

minor
sector

major sector

minor
segment

major segment

A fundamental assumption of the course is that arc length is proportional to the
angle subtended at the centre. In particular, we shall assume that:

5

COURSE ASSUMPTION: In the same circle or in circles of equal radius:
• Equal arcs subtend equal angles at the centre.
• Conversely, arcs subtending equal angles at the centre are equal.
• Equal arcs cut off equal chords.
• Conversely, equal chords cut off equal arcs.

The first two statements can be proven informally by rotating one arc onto the
other. The last two statements then follow from the first two, using the previous
theorem. In the following diagrams, O is the centre of each circle.

A

B
X

Y
O

� AOB = � XOY and
AB = XY (arcs AB

and XY are equal).

A

B
X

Y
O

θ θ

arc AB = arcXY (arcs
subtending equal angles
at the centre are equal).

A

B
X

Y
O

arc AB = arcXY

(equal chords AB and XY

cut off equal arcs).

WORKED EXERCISE: Two equal chords AB and XY of a circle intersect at E.
Use equal arcs to prove that AX = BY and that �EBX is isosceles.

SOLUTION:

First, arcAB = arcXY (equal chords cut off equal arcs),
so arc AX = arcBY (subtracting arcXB from each arc),
so AX = BY (equal arcs cut off equal chords).
Secondly, �ABX ≡ �Y XB (SSS),

E

A

B
X

Y
so � ABX ≡ � Y XB (matching angles of congruent triangles),
hence EX = EB (opposite angles are equal).

ISBN: 978-1-107-61604-2 
Photocopying is restricted under law and this material must not be transferred to another party 

© Bill Pender, David Sadler, Julia Shea, Derek Ward 2012 Cambridge University Press



� �CHAPTER 9: Circle Geometry 9A Circles, Chords and Arcs 347

Chords and Distance from the Centre: The following theorem and its converse about
the distance from a chord to the centre are often combined with Pythagoras’ the-
orem in mensuration problems about circles. They are proven in the exercises.

6
COURSE THEOREM: In the same circle or in circles of equal radius:
• Equal chords are equidistant from the centre.
• Conversely, chords that are equidistant from the centre are equal.

M
O

N

X
B

A

Y

If AB = XY,

then OM = ON (equal chords are
equidistant from the centre O).

M
O

N

X
B

A

Y

If OM = ON,

then AB = XY (chords equidistant
from the centre O are equal).

Chords, Perpendiculars and Bisectors: The radii from the endpoints of a chord are
equal, and so the chord and the two radii form an isosceles triangle. The following
important theorems are really restatements of theorems about isosceles triangles.

7

COURSE THEOREM:
• The perpendicular from the centre of a circle to a chord bisects the chord.
• Conversely, the interval from the centre of a circle to the midpoint of a chord

is perpendicular to the chord.
• The perpendicular bisector of a chord of a circle passes through the centre.

Proof:

A. To prove the first part, let AB be a chord of a circle with centre O.
Let the perpendicular from O meet AB at M . We must prove that AM = MB.
In the triangles AMO and BMO:

1. OM = OM (common),
2. OA = OB (radii),
3. � OMA = � OMB = 90◦ (given),

O

A M B
so �AMO ≡ �BMO (RHS).
Hence AM = BM (matching sides of congruent triangles).

B. To prove the second part, let AB be a chord of a circle with centre O.
Let M be the midpoint of AB. We must prove that OM ⊥ AB.
In the triangles AMO and BMO:

1. OM = OM (common),
2. OA = OB (radii),
3. AM = BM (given),

O

A M Bso �AMO ≡ �BMO (SSS).
Hence � AMO = � BMO (matching angles of congruent triangles).
But AMB is a straight line, and so � AMO = 90◦.
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O

A M B

C. To prove the third part, let AB be a chord of a circle
with centre O. As proven in the first part, the per-
pendicular from O to AB bisects AB, and hence is the
perpendicular bisector of AB. Hence the perpendicular
bisector of AB passes through O, as required.

WORKED EXERCISE: In a circle of radius 6 units, a chord of
length 10 units is drawn.
(a) How far is the chord from the centre?
(b) What is the sine of the angle between the chord and a

radius at an endpoint of the chord?

O

A
M

B
α
6

10

SOLUTION: Let the centre be O and the chord be AB.
Construct the perpendicular OM from O to AB,
and join the radius OA.

(a) Then AM = MB (perpendicular from centre to chord),
so OM 2 = 62 − 52 (Pythagoras),
and OM =

√
11 .

(b) Also, sinα = 1
6

√
11 .

O

Constructing the Centre of a Given Circle: The third part of the previous theorem gives
a method of constructing the centre of a given circle.

8

COURSE CONSTRUCTION: Given a circle, construct
any two non-parallel chords, and construct their
perpendicular bisectors. The point of intersec-
tion of these bisectors is the centre of the circle.

Proof: Since every perpendicular bisector passes through the centre, the centre
must lie on every one of them, so the centre must be their single common point.

Constructing the Circle through Three Non-collinear Points: Any two distinct points
determine a unique line. Three points may or may not be collinear, but if they
are not, then they lie on a unique circle, constructed as described here.

9
COURSE THEOREM: Given any three non-collinear points, there is one and only

one circle through the three points. Its centre is the intersection of any two
perpendicular bisectors of the intervals joining the points.

The circle is called the circumcircle of the triangle formed by the three points,
and its centre is called the circumcentre.

Given: Let ABC be a triangle, and let O be the intersection of the perpendic-
ular bisectors OP and OQ of BC and CA respectively.

Aim: To prove:
A. The circle with centre O and radius OC passes through A and B.
B. Every circle through A, B and C has centre O and radius OC.

Construction: Join AO, BO and CO.
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Proof:

A. In the triangles BOP and COP :
1. OP = OP (common),
2. BP = CP (given),

O

C

A

B

Q

P3. � BPO = � CPO = 90◦ (given),
so �BOP ≡ �COP (SAS).
Hence BO = CO (matching sides of congruent triangles).
Similarly, �AOQ ≡ �COQ and AO = CO.
Hence BO = CO = AO,

and the circle with centre O and radius OC passes through A and B.

B. Now suppose that some circle with centre Z passes through A, B and C. We
have already shown that the perpendicular bisector of a chord passes through
the centre, and so Z lies on both OP and OQ. Hence O and Z coincide, and
the radius is OC.

Exercise 9A
Note: In each question, all reasons must always be given. Unless otherwise indicated,
any point labelled O is the centre of the circle.

1. In part (c), O and Z are the centres of the two circles of equal radii.

B

A

O

(a)

Prove that �OAB
is isosceles.

O

F

G

(b)

Prove that �OFG
is equilateral.

S

T

O Z

(c)

Prove that OSZT
is a rhombus.

A

B

M

L

O

(d)

Prove that arcs AL and
MB have equal lengths.

A

B

F

G

O

(e)

Prove that AFBG
is a parallelogram.

A B

CD

O

(f)

Prove that ABCD
is a rectangle.

2. Find α, β, γ and δ. In parts (g) and (h), prove that arcABC = arcBCD and AC = BD.

A
B

C

α
β

γ

110º
O

(a)

30º
40º

α
β γ

A

B

C

O

(b)

A

B

C

α

20º

O

(c)

A

O

BC
α

(d)
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O

A
P

B

60º
β

α
20º

(e)

B

A

O

Q

P

40º

55º

α

β

(f)

50º
O α

A

B

C

D

β

(g) A

B
C

D

O
α

β
γ

δ35º

35º
35º

(h)

O

A
M

B

5

24

3. (a)

Find AO.

9
11 O

F
G

H

α

(b)

Find FH and cos α.

20
O

P
X

R

Q

α
14

(c)

Find OX, QR and cos α.

4. Construction: Construct the centre of a given circle.

(a) Trace the circle drawn to the right, then use the con-
struction given in Box 8 to find its centre.

(b) Trace it again, then use and explain this alternative con-
struction. Construct any chord AB, and construct its
perpendicular bisector — let the bisector meet the circle
at P and Q, and construct the midpoint O of PQ.

5. Construction: Construct the circumcircle of a given triangle.
Place three non-collinear points towards the centre of a page, then use the construction
given in Box 9 to construct the circle through these three points.

D E V E L O P M E N T

O

A

B X

Y

6. Course Theorem: Equal chords subtend equal angles at
the centre, and are equidistant from the centre.
In the diagram opposite, AB and XY are equal chords.
(a) Prove that �AOB ≡ �XOY .
(b) Prove that � AOB = � XOY .
(c) Prove that the chords are equidistant from the centre.

O

A

B

X

Y
θ

θ

7. Course Theorem: Two chords subtending
equal angles at the centre have equal lengths.
In the diagram opposite, the angles � AOB and
� XOY subtended by AB and XY are equal.
(a) Prove that �AOB ≡ �XOY .
(b) Hence prove that AB = XY .

M
O

N

X
B

A

Y

8. Course Theorem: Two chords equidistant from the cen-
tre have equal lengths.
In the diagram opposite, OM = ON .
(a) Prove that �OAM ≡ �OXN .
(b) Prove that �OBM ≡ �OY N .
(c) Hence prove that AB = XY .
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9. Two parallel chords in a circle of diameter 40 have length 20 and 10. What are the possible
distances between the chords?

O
G R

Q
P

β

10. (a)

Prove that � POG = 3β.

O
X

Y

ZT
θ

(b)

Prove that � TOY = θ.

αα

O

A
P

D

B

(c)

Prove that OD ‖ AP .

A
F

G

BO

11. (a)

Prove that AF = BG.
[Hint: First prove that
�OAF ≡ �OBG.]

O

FA

B

α
α

(b)

Prove that AF = BF .
[Hint: First prove that
�OAF ≡ �OBF .]

A B
OF G

Z

P

Q

(c)

Prove that AF = BG.
[Hint: First use intercepts
to prove that FO = OG.]

M

F

J
G

K

12. (a)

Prove that FJ = KG,
and that MG = MJ .

A

B

P

Q

(b)

Prove that � PAB = � QAB,
and that AB is a diameter.

S

TP

Q
O

(c)

Prove that SP = SQ,
and that PQ ⊥ ST .

O P

A

M

B

C D

13. Theorem: When two circles intersect, the line joining their
centres is the perpendicular bisector of the common chord.
In the diagram opposite, two circles intersect at A and B.
(a) Prove that �OAP ≡ �OBP .
(b) Hence prove that �OMA ≡ �OMB.
(c) Hence prove that AM = MB and AB ⊥ OP .
(d) Under what circumstances will OAPB form a rhombus?

14. In the configuration of the previous question, suppose also that each circle passes through
the centre of the other (the circles will then have the same radius).
(a) Prove that the common chord subtends 120◦ at each centre.
(b) Find the ratio AB : OP . (c) Use the formula for the area of the segment

to find the ratio of the overlapping area to the area of circle C.

A B

C

M

O

15. Theorem: If an isosceles triangle is inscribed in a circle,
then the line joining the apex and the centre is perpendicular
to the base. In the diagram opposite, CA = CB.
(a) Prove that � CAO = � CBO and � ACM = � BCM .
(b) Hence prove that COM ⊥ AB.
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D
C

B
A

16. In the diagram to the right, the two concentric circles have
radii 1 and 2 respectively.
(a) What is the length of the chord AD?
(b) How far is the chord from the centre O?
[Hint: Let 2x = AB = BC = CD, and let h be the distance
from the centre O. Then use Pythagoras’ theorem.]

17. Trigonometry: A chord of length � subtends an angle θ
at the centre of a circle of radius r.
(a) Prove that �2 = 2r2(1 − cos θ).
(b) Prove that � = 2r sin 1

2 θ.
(c) Use trigonometric identities to reconcile the two results.

18. Coordinate Geometry: Using the result of Box 9, or otherwise, find the centre and
radius of the circle passing through A, B and the origin O(0, 0) in each case:

(a) A = (4, 0), B = (4, 8)
(b) A = (4, 0), B = (2, 12)

(c) A = (4, 0), �ABO equilateral
(d) A = (6, 2), B = (2, 6)

E X T E N S I O N

19. The ratio of the length of a chord of a circle to the diameter is λ : 1. The chord moves
around the circle so that its length is unchanged. Explain why the locus of the midpoint M
of the chord is a circle, and find the ratio of the areas of the two circles.

20. An n-sided regular polygon is inscribed in a circle. Let the ratio of the perimeter of the
polygon to the circumference of the circle be λ : 1, and let the ratio of the area of the
polygon to the area of the circle be μ : 1.
(a) Find λ and μ for n = 3, 4, 6 and 8.
(b) Find expressions of λ and μ as functions of n, explain why they both have limit 1,

and find the smallest value of n for which: (i) λ > 0·999 (ii) μ > 0·999

9 B Angles at the Centre and Circumference
This section studies the relationship between angles at the centre of a circle and
angles at the circumference. The converse of the angle in a semicircle theorem is
new work.

Angles in a Semicircle: An angle in a semicircle is an angle at the circumference
subtended by a diameter of the circle. Traditionally, the following theorem is
attributed to the early Greek mathematician Thales, and is said to be the first
mathematical theorem ever formally proven.

10 COURSE THEOREM: An angle in a semicircle is a right angle.

Given: Let AOB be a diameter of a circle with centre O, and let P be a point
on the circle distinct from A and B.

Aim: To prove that � APB = 90◦.

Construction: Join OP .
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� �CHAPTER 9: Circle Geometry 9B Angles at the Centre and Circumference 353

Proof: Let � A = α and � B = β.

Now OA = OP = OB (radii of circle),
forming two isosceles triangles �AOP and �BOP ,
and so � APO = α and � BPO = β.

But (α + β) + α + β = 180◦ (angle sum of �ABP ), α

β

O

B

A

P

so α + β = 90◦, and � APB = 90◦.

B
A

C

D

O
23º

α

WORKED EXERCISE: Find α, and prove that A, O and D are collinear.

SOLUTION: First, � BAC = 90◦ (angle in a semicircle),
so α = 67◦ (angle sum of �BAC).
Secondly, � ACD = 90◦ (co-interior angles, AB ‖ CD),
and � D = 90◦, (angle in a semicircle),
so ABCD is a rectangle (all angles are right angles).
Since the diagonals of a rectangle bisect each other,
the diagonal AD passes through the midpoint O of BC.

Converse of the Angle in a Semicircle Theorem: The converse theorem essentially says
‘every right angle is an angle in a semicircle’, so its statement must assert the
existence of the semicircle, given a right triangle.

11

COURSE THEOREM: Conversely, the circle whose diameter is the hypotenuse of a
right triangle passes through the third vertex of the triangle.

OR
The midpoint of the hypotenuse of a right triangle is equidistant from all three

vertices of the triangle.

Given: Let ABP be a triangle right-angled at P .

Aim: To prove that P lies on the circle with diameter AB.

Construction: Complete �APB to a rectangle APBQ,
and let the diagonals AB and PQ intersect at O.

Proof: The diagonals of the rectangle APBQ

are equal, and bisect each other.

A

P

B

Q

O

Hence OA = OB = OP = OQ, as required.

M

A

B P

N

C

WORKED EXERCISE: From any point P on the side BC of
a triangle ABC right-angled at B, a perpendicular PN is
drawn to the hypotenuse. Prove that the midpoint M of AP
is equidistant from B and N .

SOLUTION: Since AP subtends right angles at N and B, the
circle with diameter AP passes through B and N . Hence
the centre M of the circle is equidistant from B and N .

Angles at the Centre and Circumference: A semicircle subtends a straight angle at the
centre, which is twice the right angle it subtends at the circumference. This
relationship can be generalised to a theorem about angles at the centre and
circumference standing on any arc.
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12
COURSE THEOREM: The angle subtended at the centre of a circle by an arc is twice

any angle at the circumference standing on the same arc.

The angle ‘standing on an arc’ means the angle subtended by the chord joining
its endpoints.

Given: Let AB be an arc of a circle with centre O, and let P be a point on
the opposite arc.

Aim: To prove that � AOB = 2 × � APB.

Construction: Join PO, and produce to X. Let � APO = α and � BPO = β.

O

X
A B

P

α β

Case 1

A B

P

O β

Case 2
A B

OX Pα
β

Case 3

Proof: There are three cases, depending on the position of P .
In each case, the equal radii OA = OP = OB form isosceles triangles.
Case 1: � PAO = α and � PBO = β (base angles of isosceles triangles).

Hence � AOX = 2α and � BOX = 2β (exterior angles),
and so � AOB = 2α + 2β = 2(α + β) = 2 × � APB, as required.

The other two cases are left to the exercises.

Note: The converse of this theorem is also true, but is not specifically in the
course. It is set as an exercise in the Extension section following.

A

O

B

P

Q

140º

θ

φ

WORKED EXERCISE: Find θ and φ in the diagram opposite,
where O is the centre of the circle.

SOLUTION: First, φ = 70◦ (angles on the same arc APB).
Secondly, reflex � AOB = 220◦ (angles in a revolution),
so θ = 110◦ (angles on the same arc AQB).

Exercise 9B
Note: In each question, all reasons must always be given. Unless otherwise indicated,
points labelled O or Z are centres of the appropriate circles.

1. Find α, β, γ and δ in each diagram below.

35º α

β

A
P

B

O

(a)

O

P
A

B Q

40º

α

β

(b)

A

B

O

P
αβ

110º

(c)

50º
O α

β
P

A

B

(d)
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O 44º

S

T
R

V

U

α

β
γ

(e)

F A

B

G

O
β

α

γ

50º

70º

(f)

O

F

G

H

α
β

70º

(g)
A

B

C
D

O 140º

γ

β
α

(h)

α δ

γ
β

O

P

L

M Q

(i)

K

F

L

G

O

70º
β

α

(j)
F

G

H

O

β

2α

γ 3α

(k)

O
104º

γ

α

B

A

C

30º

β

(l)

20º
β α

Z

Y

X
O

(m)

A

B

C

D
O

α

35º βγ

(n)
A

P

B

Q

O
220º

α

β

γ

(o)

P

Q R

S

O
α

110º

120º

γ

β

(p)

2. In each diagram, name a circle containing four points, and name a diameter of it. Give
reasons for your answers.

A B

C

D

(a)

F

G
H

I

M

(b)

A

X
B

N

M

O

(c)

O

G
H

YX

F(d)

3. A photographer is photographing the façade of a building. To do this effectively, he has
to position himself so that the two ends of a building subtend a right angle at his camera.
Describe the locus of his possible positions, and explain why he must be a constant distance
from the midpoint of the building.

A B

C

X

O

4. Construction: Constructing a right angle at the end-
point of an interval. Let AX be an interval. With any
centre O above or below the interval AX, construct a circle
with radius OA. Let the circle pass through AX again at B.
Construct the diameter through B, and let it meet the circle
again at C. Prove that AC ⊥ AX.

D E V E L O P M E N T

5. Course Theorem: Complete the other two cases of the proof that the angle at the
centre subtended by an arc is twice the angle at the circumference subtended by that arc.
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6. Alternative proofs that an angle in a semicircle is a right angle: Let AB
be a diameter of a circle with centre O, and let P be any other point on the circle.

A
O

B

P
(a) Euclid’s proof, Book 1, Proposition XX: Produce AP

to Q, and join OP . Let � A = α and � B = β.
(i) Explain why � QPB = α + β and � APB = α + β.
(ii) Hence prove that � APB is a right angle.

(b) Proof using rectangles: Join PO and produce it to the
diameter POR. Use the diagonal test to prove that
APBR is a rectangle, and hence that � APB = 90◦.

(c) Proof using intercepts: Let M be the midpoint of AP . Explain why OM ⊥ AP and
OM ‖ BP . Hence prove that � P is a right angle.

7. Alternative proofs of the converse: Let �ABP be right-angled at P .

A BO

M

P
(a) Proof using intercepts: Let O and M be the midpoints

of AB and AP respectively.
(i) Prove that OM ⊥ AP .
(ii) Prove that �AOM ≡ �POM .
(iii) Explain why O is equidistant from A, B and P .

A
O

B

X
P

(b) A proof using the forward theorem: Construct the cir-
cle with diameter AB. Let AP (produced if necessary)
meet the circle again at X. We must prove that the
points P and X coincide.
(i) Explain why � AXB = 90◦.
(ii) Explain why PB ‖ XB.
(iii) Explain why the points P and X coincide.

O

A

B
C

α

8. (a)

Explain why � B = α,
and find reflex � O. Then
prove that α = 120◦.

O

A

B

C

D

24º
56ºα

β
γ

(b)

Find α, β and γ.

A B

QO

P

α
β

68º

25º

3º

(c)

Find α and β. Then prove
that AP ‖ BQ.

9. In each case, prove that C is the midpoint of AP . In part (a), AB = PB.

A

B

P

C

O

(a)

[Hint: Join BC.]

O

Z

C

P

A

B

(b)

[Hint: Join OC and PB.]

O A

C

P

D

B

(c)

[Hint: Join BC.]
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10. Give careful arguments to find α, β and γ in each diagram. In part (a), prove also that
OM = MB. [Hint: Parts (b) and (c) will need congruence.]

M

O

C

B

A

α
β

γ
60º

(a)

O

F
G

H

Pα β
γ

(b)

O

P

Q

R
M

α
β

(c)

11. Find α, β, γ and δ in each diagram. Begin part (c) by proving that α = 120◦.

B

A
C

O
130º

40º
α

β

(a)

M

N

O

K

L

α

β

70º40º

(b)

A

BG

F

O α α

β
γ

(c)

A

B

C

D

G

F

O
40º α

β

γ

δ

(d)

O Z

A

B GF

12. (a)

AOF and AZG are both diameters.
(i) Join AB, and hence prove that

� ABF = � ABG = 90◦.
(ii) Show that the points F , B and G

are collinear.
(iii) If the radii are equal, prove that

FB = BG.

O

B

A

Z Q

P

α

β

(b)

A line through A meets the two circles again at
P and Q. Let � P = α and � Q = β.
(i) Prove that �AOZ ≡ �BOZ.
(ii) Prove that OZ bisects � AOB and � AZB.
(iii) Prove that � BOZ = α and � BZO = β.
(iv) Prove that � PBQ = � OBZ.

F GM

H

13. (a)

(i) Prove that the circles FMH, HMG
and GHF have diameters FH, HG
and GF respectively.

(ii) Prove that the sum of the areas of
the circles FMH and GMH equals
the area of the circle FHG.

B

D

C

A

O M

(b)

(i) Prove that � A = � C = 45◦.
(ii) Prove that AD ⊥ BC.
(iii) Prove that M lies on the circle BDO.

ISBN: 978-1-107-61604-2 
Photocopying is restricted under law and this material must not be transferred to another party 

© Bill Pender, David Sadler, Julia Shea, Derek Ward 2012 Cambridge University Press



� �358 CHAPTER 9: Circle Geometry CAMBRIDGE MATHEMATICS 3 UNIT YEAR 12

E X T E N S I O N

14. Minimisation: In a rectangle inscribed in a circle, let length : breadth = λ : 1.

(a) Show that the ratio of the areas of the circle and the rectangle is
π

4

(
λ +

1
λ

)
.

(b) Prove that the ratio of the areas has its minimum when the rectangle is a square, and
find this minimum ratio.

(c) Find λ when the ratio of the areas is twice its minimum value.

15. Theorem: The converse of the angle at the centre and circumference theorem.
Use the method of question 7(c) to prove that if �AOB is isosceles with apex O, and a
point P lies on the same side of AB as O such that � AOB = 2� APB, then the circle
with centre O and radius OA = OB also passes through C.

16. Circular motion: A horse is travelling around a circular track at a constant rate, and
a punter standing at the edge of the track is following him with binoculars. Use circle
geometry to prove that the punter’s binoculars are rotating at a constant rate.

9 C Angles on the Same and Opposite Arcs
The previous theorem relating angles at the centre and circumference has two im-
portant consequences. First, any two angles on the same arc are equal. Secondly,
two angles in opposite arcs are supplementary, or alternatively, the opposite an-
gles of a cyclic quadrilateral are supplementary,

Angles at the Circumference Standing on the Same Arc: An angle subtended by an arc
at the circumference of a circle is also called ‘an angle in a segment’, just as an
angle in a semicircle is called ‘an angle in a semicircle’. This accounts for the
alternative statement of the theorem:

13
COURSE THEOREM: Two angles in the same or equal segments are equal.

OR
Two angles at the circumference standing on the same or equal arcs are equal.

The proof of this theorem relates the two angles at the circumference back to the
single angle at the centre (the case of ‘equal arcs’ is left to the reader):

Given: Let AB be an arc of a circle with centre O, and
let P and Q be points on the opposite arc.

Aim: To prove that � APB = � AQB.

Construction: Join AO and BO.

Proof: � AOB = 2 × � APB (angles on the same arc AB),
and � AOB = 2 × � AQB (angles on the same arc AB).

A B

O

P

Q

Hence � APB = � AQB.

WORKED EXERCISE: Find α, β and γ in the diagram opposite.

15º

20º

α

β

γ A

B

G

F

M

SOLUTION: α = 15◦ (angles on the same arc BG),
β = 35◦ (exterior angle of �BFM),
γ = 35◦ (angles on the same arc AF ).
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Cyclic Quadrilaterals: A cyclic quadrilateral is a quadrilateral whose vertices lie on a
circle (we say that the quadrilateral is inscribed in the circle). A cyclic quadri-
lateral is therefore formed by taking two angles standing on opposite arcs, which
is why its study is relevant here.

14
COURSE THEOREM:
• Opposite angles of a cyclic quadrilateral are supplementary.
• An exterior angle of a cyclic quadrilateral equals the opposite interior angle.

Given: Let ABCD be a cyclic quadrilateral, with side BC produced to T , and
let O be the centre of the circle ABCD. Let � A = α and � C = γ.

Aim: To prove: (a) α + γ = 180◦ (b) � DCT = α

Construction: Join BO and DO.

Proof: There are two angles at O, one reflex, one non-reflex.

(a) Taking angles on the arc BCD, � BOD = 2α (facing C),
Taking angles on the arc BAD, � BOD = 2γ (facing A).

A

B

C

D

O

T

γ

α

Hence 2α + 2γ = 360◦ (angles in a revolution),
so α + γ = 180◦, as required.

(b) Also, � DCT = 180◦ − γ (straight angle),
= α, by part (a).

WORKED EXERCISE: In the diagram below, prove that X, A and Y are collinear.

SOLUTION: Join AB, AX and AY , and let � P = θ.
� XAB = 180◦ − θ

(opposite angles of cyclic quadrilateral ABPX).
Also � Q = 180◦ − θ

(co-interior angles, PX ‖ QY ),
so � Y AB = θ

(opposite angles of cyclic quadrilateral ABQY ).

A

BP Q

X Y

θ

Hence � XAY = 180◦, and so XAB is a straight line.

Exercise 9C
Note: In each question, all reasons must always be given. Unless otherwise indicated,
points labelled O or Z are centres of the appropriate circles.

1. Find α, β and γ as appropriate in each diagram below.

F G

A

B

C
25º

α

β

(a)

A

B

M

L
70º

α
β

(b)

100º

15º T

Q
S

P
Mβα

(c)

A

D

B

C

M
25º

α

β

(d)
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F

H

X

I

G

40º

125ºα
β

(e)

38º

85º A

B

C

D

α
β

(f)

B

A

Q

P K

70º

α
60º

β

(g)

P

Q

R
S

F

G

110º

100º
α

β

γ

(h)

A

B

CD

M

115º

35º α

β

γ

(i)
E

F

G

H

P

25º

32º
α

β
γ

(j)

A

B

C P

Q

γ

β

α

50º
M

(k)

32º

66º

M

AB

C
D

α

β γ

(l)

2. Find α, β and γ as appropriate in each diagram.

A

B

D

C

72º

14º

α

β
O

(a)

30º

22ºS

A

B

R

M

β

α

(b)

A

B

α

β

L

K

80º

γ
(c)

R S

T U
γ

β
α

62º
42º

(d)

P
Q

RS

T

α β

γ 36º
40º

(e)
A

B

CD

E

66º

β

α

(f)

K
L

M
N

α

2α 4β

3β

(g)

F G

H

O
β

20º
65º

α

24º

γ

(h)

3. Suppose that ABCD is a cyclic quadrilateral. Draw a diagram of ABCD, and then explain
why sinA = sin C and sinB = sinD.

A

B
C

D
E

α

α

4. (a)

Prove that CD ‖ AB.
Prove that EC = ED.

A B

C D

M
α

(b)

Prove that � A = � B = � C = � D.
Prove that AD = BC.
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A

B
C

D
α

(c)

Prove that � ACB = α.
Prove that AC bisects � DCB.

A

B C

D(d)

Prove that AB ⊥ BC.

D E V E L O P M E N T

A

B

C
D

θ
φ

5. Alternative proof that the opposite angles of a
cyclic quadrilateral are supplementary:
In the diagram opposite:
(a) Prove that � DBC = θ and � BDC = φ.
(b) Hence prove that � DAB and � DCB are supplementary.

E
A

B

Y
C

X

6. (a)

AX bisects � CAB, AY bisects � CAE.
Prove that � Y AX = 90◦.
Prove that � Y CX = 90◦.

A

B

P

Q

MOθ
N

(b)

Give a reason why � APB = 1
2 θ.

Show that � BPN = � AQN = 180◦ − 1
2 θ.

Show that � AMB + � ANB = θ.

A

B

Q

P

C

(c)

Give a reason why � Q = � P .
Prove that AQ ‖ CP .

A M
Q

B

P

O

(d)

Give a reason why � A = � Q.
Prove that � APM = � QPB.

A

Y

B

X

M

(e)

Give a reason why � BXY = � BAY .
Prove that AB bisects � XBY .
Prove that � XMB = � AY B.

A

B

E
D

C

M

X
Y

(f)

Give a reason why � BAD = � BEY .
Given that DA bisects � BAC,
prove that Y E bisects � XEB.
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A

B

C

D
E

F

α
7. (a)

Prove that � BEF = α and find � C.
Prove that AD ‖ CF .

A

B

ZO

QP

(b)

Find � ABP and � ABQ.
Prove that P , B and Q are collinear.

B

Z

A
H

G

F

(c)

Find � BAF and � BAH.
Prove that H, A and F are collinear.

Q F

G P

Z

(d)

Prove that QG is a diameter. If the radii
are equal, prove that QG ‖ FP .

A
G H

I

B

F

(e)

Give a reason why � FBA = � FHA.
Given that AB bisects � FBI,
prove that AG = AH.

F

P

A

B G

Q

(f)

Give a reason why � Q = � G.
Given that FBG and PBQ are straight
lines, prove that � FAP = � GAQ.

8. In each diagram, prove that �AMQ ||| �PMB. Then find MB.

Q

A

P

B

M

6
5

12

(a)

A Q

B

P
M

O5
5

(b)

B

Q

P
A

M

6

43

(c)

B

Q

P

M

A
2 3

6

(d)

A

B

X

C

D

Y
F

M

G

α α
θ φ

β
β

9. Theorem: Let the two pairs of opposite sides of a cyclic
quadrilateral meet, when produced, at X and Y respectively.
Then the angle bisectors of � X and � Y are perpendicular.
In the diagram opposite:
(a) Explain why � XDA = θ.
(b) Using �XGD and �XFB, prove that � XGD = φ.
(c) Using �MY F and �MY G, prove that Y M ⊥ XM .
(d) How should this theorem be restated when a pair of

opposite sides is parallel?
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A

B

C

D E

F

G

P
10. Theorem: Diagonals in a regular polygon.

(a) In the regular octagon opposite, use the circumcircle
to prove that the six angles between adjacent diagonals
at P are all equal. Hence find the value of α = � APB.

(b) More generally, prove that the angles between adjacent
diagonals at any vertex of an n-sided regular polygon

are all equal, and have the value
180◦

n
.

11. (a) Prove that a cyclic parallelogram is a rectangle.
(b) Prove that a cyclic rhombus is a square.
(c) Prove that the non-parallel opposite sides of a cyclic trapezium are equal.

12. Let A, B, C, D, and E be five points in order around a circle with centre O, and let AOE
be a diameter. Prove that � ABC + � CDE = 270◦.

13. (a) Prove that if two chords of a circle bisect each other, then they are both diameters.
(b) Prove that if the chords AB and PQ intersect at M and MA = MP , then MB = MQ,

BP = AQ and AP ‖ QB.

A

B C

O

P

Q
R

θ

14. The orthocentre theorem: The three altitudes of a
triangle are concurrent (their intersection is called the or-
thocentre of the triangle).
In the diagram opposite, the two altitudes AP and BQ meet
at O. Join CO and produce it to R, and join PQ.
(a) Explain why OPCQ and AQPB are cyclic.
(b) Let � ACR = θ, and explain why � APQ = � ABQ = θ.
(c) Use �OQC and �ORB to prove that CR ⊥ AB.

15. The sine rule and the circumcircle: The ratio of any side of a triangle to the sine
of the opposite angle is the diameter of the circumcircle.
Let � A in �ABC be acute, and let O be the centre of the circumcircle of �ABC. Join BO
and produce it to a diameter BOP , then join PC.

A

B
C

P

O

α(a) Let � A = α, and explain why � P = α.
(b) Explain why �BPC is a right triangle.

(c) Hence prove that
BC

sinα
= BOP .

(d) Repeat the construction and proof when � A is obtuse.

E X T E N S I O N

K L

P
α

θ
a

16. Maximisation: In the diagram below, KL is a fixed chord of length a, and the point P
varies on the major arc KL. Let y be the sum of the lengths of PK and PL.
(a) Explain why α is constant as P varies.

(b) Use the sine rule to prove that y =
a

sinα

(
sin θ + sin(θ + α)

)
.

(c) Find
dy

dθ
, and show that

d2y

dθ2 = −y.

(d) Prove that y is maximum when θ = 1
2 (π −α), then find

and simplify the maximum value.
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17. Mathematical Induction: The alternating sums of the angles of a cyclic polygon.

(a) Prove that if ABCD is a cyclic quadrilateral, then � A − � B + � C − � D = 0.

(b) Prove that if A1A2A3A4A5A6 is a cyclic hexagon, then
6∑

k=1

(−1)k � Ak = 0.

[Hint: Use the major diagonal A1A4 to divide the hexagon into two cyclic quadrilat-
erals, then apply part (a) to each quadrilateral.]

(c) Use mathematical induction, and the same method as in part (b), to prove that for

any cyclic polygon A1A2 . . . A2n with an even number of vertices,
2n∑

k=1

(−1)k � Ak = 0.

A

B

X

CP

Q

R

O

φ ψ

18. The orthocentre theorem: A proof using the circum-
circle. In the diagram, the two altitudes AP and BQ meet
at O. Join CO and produce it to R. Produce AP to meet
the circumcircle of �ABC at X, and join BX and CX. Let
� CBX = φ and � BCX = ψ.
(a) Explain why � CAX = φ.
(b) Using �QOA and �POB, prove that � PBO = φ.
(c) Prove that �POB ≡ �PXB, and hence that PO = PX.
(d) Prove that �POC ≡ �PXC, and hence that � OCP = ψ.
(e) By comparing �POC and �ROA, prove that CR ⊥ AB.

19. The last two questions of Exercise 4J in the Year 11 volume contain a variety of algebraic
results about cyclic quadrilaterals and their circumcircles, established using trigonometry.
Those results and their proofs could be examined in the present context of Euclidean
geometry. See also the related questions about the circumcircle and incircle of a triangle
at the end of Exercises 4H and 4I in the Year 11 volume.

A

B CP

M
O G

20. The Euler line theorem: The orthocentre, centroid and circumcentre of a triangle
are collinear (the line is called the Euler line), with the centroid trisecting the interval
joining the other two centres.
Let M and G be the circumcentre and centroid respectively
of �ABC. Join MG, and produce it to a point O so that
OG : GM = 2 : 1. We must prove that O is the orthocentre
of �ABC.
(a) Let P be the midpoint of BC. Use the fact that

AG : GP = 2 : 1 to prove that �GMP ||| �GAO.
(b) Hence prove that O lies on the altitude from A.
(c) Complete the proof.

9 D Concyclic Points
A set of points is called concyclic if they all lie on a circle. The converses of the
two theorems of the previous section provide two general tests for four points to
be concyclic. There is an important logical structure here to keep in mind. First,
any two distinct points lie on a unique line, but three points may or may not
be collinear. Secondly, any three non-collinear points are concyclic, as proven in
Section 9A, but four points may or may not be concyclic.
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Concyclicity Test — Two Points on the Same Side of an Interval: We have proven that
angles at the circumference standing on the same arc of a circle are equal. The
converse of this is:

15
COURSE THEOREM: If two points lie on the same side of an interval, and the angles

subtended at these points by the interval are equal, then the two points and
the endpoints of the interval are concyclic.

The most satisfactory proof makes use of the forward theorem.

Given: Let P and Q be points on the same side of an interval AB such that
� APB = � AQB =α.

Aim: To prove that the points A, B, P and Q are concyclic.

Construction: Construct the circle through A, B and P , and let the circle
meet AQ (produced if necessary) at X. Join XB.

Proof: Using the forward theorem,
� AXB = � APB = α (angles on the same arc AB).

Hence � AXB = � AQB,

so QB ‖ XB (corresponding angles are equal).
But QB and XB intersect at B, and are therefore the same line. A B

Q

P
Xα

α

Hence Q and X coincide, and so Q lies on the circle.

WORKED EXERCISE: In the diagram opposite, AB = AG.
Prove that ACGD is cyclic, and that � ACD = � AGD.

SOLUTION: Let � B = β.

Then � AGB = β (base angles of isosceles �BAG)
and � ADC = β

(opposite angles of parallelogram ABCD),
D

A
B

C

G

β

so the quadrilateral ACGD is cyclic,
because AC subtends equal angles at D and G.
Hence � ACD = � AGD (angles on the same arc AD).

Concyclicity Test — Cyclic Quadrilaterals: The converses of the two forms of the cyclic
quadrilateral theorem are:

16

COURSE THEOREM:
• If one pair of opposite angles of a quadrilateral is supplementary, then the

quadrilateral is cyclic.
• If one exterior angle of a quadrilateral is equal to the opposite interior angle,

then the quadrilateral is cyclic.

Since the exterior angle and the adjacent interior angle are supplementary, being
angles in a straight angle, we need only prove the first test, and the second will
follow immediately. The proof of the first test is similar to the previous proof,
and is left to the exercises.
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WORKED EXERCISE: Give reasons why each quadrilateral below is cyclic.

80º

100º

A B

C

D

(a)

ABCD is a cyclic quadrilateral
(opposite angles are supplementary).

70º

70ºP

Q

R

S

T(b)

PQRS is a cyclic quadrilateral (exterior
angle equals opposite interior angle).

Note: When the angles subtended by the interval are right angles, the four
points are concyclic by the earlier theorem that a right angle was an angle in a
semicircle, moreover the interval is then a diameter of the circle. These two tests
for the concyclicity of four points should therefore be seen as generalisations of
that theorem.

WORKED EXERCISE: Prove that if FGCB is cyclic, then FB = GC.
Prove that if FB = GC, then FGCB is cyclic.

SOLUTION: Let � AFG = α.
Then � AGF = α (base angles of isosceles �AFG).
Suppose first that FGCB is cyclic.

αF

A

G

B

C

Then � C = α (exterior angle of cyclic quadrilateral FGCB)
and � B = α (exterior angle of cyclic quadrilateral FGCB),
so AB = AC (opposite angles of �ABC are equal),
hence FB = GC (subtracting the equal intervals AF and AG).
Suppose secondly that FB = GC.
Then FG ‖ BC (intercepts on AB and AC),
so � B = α (corresponding angles, FG ‖ BC),
hence FGCB is cyclic (exterior angle � AGF equals interior opposite angle � B).

Exercise 9D

Note: In each question, all reasons must always be given. Unless otherwise indicated,
points labelled O are centres of the appropriate circles.

1. In each diagram, give a reason why ABCD is a cyclic quadrilateral.

70º

110º

D

A

B

C

(a)

40º

40º

A
B

C

D

(b)

30º

30º

M

A

B

C

D

(c)

37º

37º

A

B

C

D

M

(d)
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2. In each diagram, prove that the four darkened points are concyclic.
A

B C

P Q
20º 20º

(a) A

B C

P Q

70º 70º

α α

(b) A

B C

J K

β

(c)
A B

C D E

(d)

B

M

O

N
C

A(e) A

B

C
D

G
H

(f)

A

B

CD

PQ(g)

A

P

Q

C

B

O

(h)

B C

E
D

A

α
α

3. (a)

Prove that BEDC is cyclic.
Hence prove that � EBD = � ECD,
and that � ADE = � ABC.

A B

C D

O

M

θ

(b)

Prove that � BMD = 2θ, and
hence prove that BMOD is cyclic.
Hence prove that � MBO = � MDO.

4. (a) Prove that every rectangle is cyclic.
(b) Prove that any quadrilateral ABCD in which � A − � B + � C − � D = 0◦ is cyclic.

D E V E L O P M E N T

A

B C X

D

5. Course theorem: If one pair of opposite angles of a quadrilateral is supplementary,
then the quadrilateral is cyclic.
Let ABCD be a quadrilateral in which � A+ � BCD = 180◦.
Construct the circle through A, B and D, and let it meet BC
(produced if necessary) at X. Join DX.
(a) Prove that � BXD + � A = 180◦.
(b) Prove that CD ‖ XD, and that C and X coincide.

A

B C

M

N

α α

6. (a)

(i) Prove that if ABMC is cyclic,
then MC ⊥ AC.

(ii) Prove that if MC ⊥ AC,
then ABMC is cyclic.

B F C

G

A

H

(b)

(i) Prove that if � BHF = � AGF , then
FGAH is cyclic and � AHG = � AFG.

(ii) Prove that if � AHG = � AFG, then
FGAH is cyclic and � BHF = � AGF .
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A B C D

P Q R S

7. (a)

In the diagram above, ABCD and
PQRS are straight lines, not
necessarily parallel.
(i) Show that AP ‖ CR.
(ii) Show that APSD is cyclic.

R A
P

QB

M

S

θ

(b)

(i) Prove that � PAB = θ.
(ii) Prove that if S, B, Q and M are con-

cyclic, then R, A, and P are collinear.
(iii) Prove that if R, A and P are collinear,

then SBQM is cyclic.

8. Let AB and XY be parallel intervals, with AY and BX meeting at M .
(a) Prove that if AXY B is cyclic, then MA = MB.
(b) Prove that if MA = MB, then AXY B is cyclic.

9. Let P , Q and R be the midpoints of three chords MA, MB and MC of a circle.
(a) Prove that PQ ‖ AB and QR ‖ BC. (b) Prove that M , P , Q and R are concyclic.

A

B

P Q

C

X
Y

θ
φ

10. (a)

In the diagram above, AB = AC.
(i) Prove that � CPQ = θ.
(ii) Prove that � CPA = φ.
(iii) Hence prove that PQY X is cyclic.

A

B C
N P

(b)

(i) Prove that if AP produced is a diameter
of circle ABC, then � BAN = � CAP .

(ii) Prove that if � BAN = � CAP , then AP
produced is a diameter of circle ABC.

A

B

XY

M

P11. The chord AB of the circle opposite is fixed, and the point P
varies on the major arc of the circle. The altitudes AX
and BY of �ABP meet at M .
(a) Let � P = α. Explain why α is constant.
(b) Explain why PXMY is cyclic.
(c) Show that � AMB = 180◦−α, and find the locus of M .

E X T E N S I O N

A

B

X' X

7 7
10

Y

40º

12. Trigonometry: The spurious ASS congruence test can
be related to cyclic quadrilaterals.
The unbroken lines represent a construction of the two pos-
sible triangles ABX and ABX ′ in which � BAX = 40◦,
AB = 10 and BX = 7. The broken lines represent �ABX ′

reflected about AB to �ABY . Prove that the two triangles
together form a cyclic quadrilateral AXBY .
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13. A trigonometric theorem: tan(B + 1
2 A) =

c + b

c − b
tan 1

2 A in any triangle ABC.

Let ABC be a triangle in which c > b. Let � ABC = β
and � CAB = α. Construct the circle with centre A passing
through B, and construct the diameter FACG. Let the
perpendicular to FACG through C meet BG at M . A

B

F

C

M
G

β αc
b(a) Explain why AF = c and CG = c − b.

(b) Prove that C, M , B and F are concyclic.
(c) Prove that � BFC = 1

2 α = � CMG.
(d) Prove that � FBC = β + 1

2 α = � FMC.
(e) Prove that CM = (c − b) cot 1

2 α = (c + b) cot(β + 1
2 α).

(f) Adapt the construction to prove the theorem when c < b.

A

C

B
D

EM
14. ABC and ADE are any two intervals meeting at A. Let BE

and DC meet at M , and let the circles CMB and EMD
meet again at N . Prove that ADNC and ABNE are cyclic.
[Hint: Join NM , NC and NE.]

15. Referring to the diagram in question 11, where the chord AB is constant and P varies:
(a) Explain why AY XB is cyclic, and locate the centre of this circle.
(b) Prove that � Y AX is constant, and that the interval XY has constant length.
(c) What is the locus of the midpoint of XY ?

16. The nine-point circle theorem: The circle through the feet of the three altitudes of
a triangle passes through the three midpoints of the sides, and bisects the three intervals
joining the orthocentre to the vertices. Its centre is the
midpoint of the interval joining the circumcentre and the
orthocentre.

A

B C

Q

R

M

L P

N

O

F

HG

γβ

α

In �ABC opposite, P , Q and R are the feet of the three
altitudes. The circle PQR meets the sides at L, M and N ,
and the intervals joining the orthocentre to the vertices at
F , G and H. Let � ABO = α, � BAO = β and � CAO = γ.
(a) Prove that � RBO = � RPO = � QPO = � QCO = α.
(b) Proceed similarly with β and γ.
(c) Prove that α + β + γ = 180◦.
(d) Prove that � RLQ = 2α, and hence that BL = LC.
(e) Prove that � LHC = � RPL, and hence that OH = HC.

17. Let ABCD be a square, and let P be a point such that AP : BP : CP = 1 : 2 : 3.
(a) Find the size of � APB.
(b) Give a straight-edge-and-compasses construction of the point P .

9 E Tangents and Radii
Tangents were the object of intensive study in calculus, because the derivative
was defined as the gradient of the tangent. Circles, however, were their original
context, and the results in the remainder of this chapter are developed without
reference to the derivative.
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secant

tangent
Tangent and Radius: We shall assume that given a circle, any line

is a secant crossing a circle at two points, or is a tangent
touching it at one point, or misses the circle entirely.

17
DEFINITION: A tangent is a line that meets a circle

in one point, called the point of contact.

We shall also make the following assumption about the relationship between a
tangent and the radius at the point of contact.

18
COURSE ASSUMPTION: At every point on a circle, there is one and only one tan-

gent to the circle at that point. This tangent is the line through the point
perpendicular to the radius at the point.

This result can easily be seen informally in two ways. First, a diameter is an
axis of symmetry of a circle — this symmetry reflects the perpendicular line at
the endpoint T onto itself, and so the perpendicular line cannot meet the circle
again, and is therefore a tangent.

O

T
Alternatively, if a line ever comes closer than the radius
to the centre, then it will cross the circle twice and be a
secant, so a tangent at a point T on a circle must be a line
whose point of closest approach to the centre is T — but the
closest distance to the centre is the perpendicular distance,
therefore the tangent is the line perpendicular to the radius.

A α

O

B

P

60º

WORKED EXERCISE: Find α in the diagram below, where O is
the centre, and prove that PA is a tangent to the circle.

SOLUTION: OA = OB (radii),
so � OAB = � OBA = 60◦ (angle sum of isosceles �OAB),
so BA = OB = PB (�OBA is equilateral).
Hence α = � P = 30◦ (exterior angle of isosceles �BAP ),
so � OAP = 90◦ (adjacent angles).
Hence PA is a tangent to the circle.

Tangents from an External Point: The first formal theorem about tangents concerns
the two tangents to a circle from a point outside the circle.

19 COURSE THEOREM: The two tangents from an external point have equal lengths.

Given: Let PS and PT be two tangents to a circle with
centre O from an external point P .

Aim: To prove that PS = PT .

Construction: Join OP , OS and OT .

Proof: In the triangles SOP and TOP :
O

T

S

P
1. OS = OT (radii),
2. OP = OP (common),
3. � OSP = � OTP = 90◦ (radius and tangent),

so �SOP ≡ �TOP (RHS).
Hence PS = PT (matching sides of congruent triangles).
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WORKED EXERCISE: Use the construction established above to prove:
(a) The tangents from an external point subtend equal angles at the centre.
(b) The interval joining the centre and the external point bisects the angle be-

tween the tangents.

Proof: Using the congruence �SOP ≡ �TOP established above:
(a) � SOP = � TOP (matching angles of congruent triangles),
(b) � SPO = � TPO (matching angles of congruent triangles).

Touching Circles: Two circles are said to touch if they have a common tangent at the
point of contact. They can touch externally or internally, as the two diagrams
below illustrate.

20
COURSE THEOREM: When two circles touch (inter-

nally or externally), the two centres and the
point of contact are collinear.

Given: Let two circles with centres O and Z touch at T .

Aim: To prove that O, T and Z are collinear.

Construction: Join OT and ZT ,

O
Z

T

X

Yand construct the common tangent XTY at T .

Proof: There are two possible cases, because the circles
can touch internally or externally, but the argument is prac-
tically the same in both. Since XY is a tangent and OT
and ZT are radii,

� OTX = 90◦ and � ZTX = 90◦.
Hence � OTZ = 180◦ (when the circles touch externally),
or � OTZ = 0◦ (when the circles touch internally).

O ZT

X

Y
In both cases, O, T and Z are collinear.

Direct and Indirect Common Tangents: There are two types of common tangents to a
given pair of circles:

21
DIRECT AND INDIRECT COMMON TANGENTS: A common tangent to a pair of circles:
• is called direct, if both circles are on the same side of the tangent,
• is called indirect, if the circles are on opposite sides of the tangent.

The two types are illustrated in the worked exercise below. Notice that according
to this definition, the common tangent at the point of contact of two touching
circles is a type of indirect common tangent if they touch externally, and a type
of direct common tangent if they touch internally.

WORKED EXERCISE: Given two unequal circles and a pair of direct or indirect com-
mon tangents (notice that there are two cases):
(a) Prove that the two tangents have equal lengths.
(b) Prove that the four points of contact form a trapezium.
(c) Prove that their point of intersection is collinear

with the two centres.

Given: Let the two circles have centres O and Z.

α
O Z

M
S

R

T

U

Let the tangents RT and US meet at M .
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Construction: Join OM and ZM .
α

O Z M

S

R

T

U

Aim: To prove:
(a) RT = SU , (b) RS ‖ UT ,
(c) OMZ is a straight line.

Proof:

(a) RM = SM (tangents from an external point),
and TM = UM (tangents from an external point),
so RT = RM − MT = SM − MU = SU (direct case),
or RT = RM + MT = SM + MU = SU (indirect case).

(b) Let α = � SRM.

Then � RSM = α (base angles of isosceles �RMS),
so � RMS = 180◦ − 2α (angle sum of �RMS),
so � TMU = 180◦ − 2α (vertically opposite, or common, angle),
so � UTM = α (base angles of isosceles �TMU).
Hence RS ‖ TU (alternate or corresponding angles are equal).

(c) From the previous worked exercise, both OM and ZM bisect the angle be-
tween the two tangents, and hence

� RMO = � TMZ = 90◦ − α.

In the direct case, OM and ZM must be the same arm of the angle with
vertex M . In the indirect case, OMZ is a straight line by the converse of the
vertically opposite angles result.

Exercise 9E
Note: In each question, all reasons must always be given. Unless otherwise indicated,
points labelled O or Z are centres of the appropriate circles, and the obvious lines at points
labelled R, S, T and U are tangents.

1. Find α and β in each diagram below.

O

T P

54º

α
(a)

O

P QT
α β

41º

(b)

O

AT
αβ
P

(c) T Q

P

α
55º

S

O

(d)

S

A

BT

O

23º

α
(e)

O

P

Q
A

T

α

18º

(f) P

O

20º

T

Q

R

α

(g)

P

O
α

130ºG
F T(h)
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2. Find x in each diagram.

O

T E16 cm

20cmx

(a)

B
Ox

T

A
13

5

(b)

S

O

4

TA

M
x

(c)

A T

M
x

6
O

(d)

B R C

A

T
S

3 5

x
9

(e)
3

B
R

C

A

T
S

x

9

10

(f)

R

S

T

U

C

D
A

B

4
5

x7

10

(g)

R

M
S

43

10 x

P

T

N

(h)

3. Find α, β and γ in each diagram below.

T A

P

S

O α
β

γ

(a) P

Q

O
T

A

60º
α

β
110º

(b)

O

S

T

A

P

α β
γ

55º
50º

(c)

C A

B

α

β

10º

140º

(d)

O
S T

A

B

C

D

4. (a)

Prove that the tangents at S and at T are
parallel.

P

R

S
T

(b)

Prove that the three tangents PR, PS and
PT from the point P on the common tan-
gent at the point S of contact are equal.

A U B

T

CSD

R

(c)

Prove that AB + DC = AD + BC.

O

S

T

P
(d)

Prove that OSPT is cyclic, and hence that
� OST = � OPT and � TOP = � TSP .

O P

A

B

5. Construction: Construct the tangents to a given circle
from a given external point.
Given a circle with centre O and an external point P , con-
struct the circle with diameter OP , and let the two circles
intersect at A and B. Prove that PA and PB are tangents.
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M
B

A

D

C

6. (a)

Prove: (i) the indirect common tangents
AD and BC are equal, (ii) AB ‖ CD.

M

B

A

C

D

(b)

Prove: (i) the direct common tangents
AC and BD are equal, (ii) AB ‖ CD.

P

R

Q

S

T

(c)

Prove that PT ‖ RQ.

M

R

S

T

(d)

Prove that the common tangent MR at the
point of contact bisects the direct common
tangent ST , and that SR ⊥ TR.

7. In each diagram, both circles have centre O and the inner
circle has radius r. Find the radius of the outer circle if:

O

M

A B

CD

(a) ABCD is a square,
A

BC

O

M

(b) ABC is an equilateral triangle.

D E V E L O P M E N T

O

S

T

P

M

8. (a) Theorem: The line joining the centre of a circle to an
external point is the perpendicular bisector of the chord
joining the points of contact.
It was proven that � TOM = � SOM in a worked exer-
cise. Using this, prove by congruence that TS ⊥ OP .

(b) Theorem: In the same notation, the semichord TM
is the geometric mean of the intercepts PM and OM .

(i) Prove that �MPT ||| �MTO.
(ii) Hence prove that TM 2 = PM × OM .

(c) Given that OM = 7 and MP = 28, find ST .

B

P Q

R

S

T

9. (a) Show that an equilateral triangle of side length 2r has
altitude of length r

√
3.

(b) Hence find the height of the pile of three circles of equal
radius r drawn to the right.
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10. In each diagram, use Pythagoras’ theorem to form an equation in x, and then solve it.
[Hint: In part (c), drop a perpendicular from P to QT .]

A

B CR

S

T

1 3

x

(a)

x

F

G H

S

T

R

2

3

(b)

S TO

P
R

Q

3

4

x

(c)

B

T

A

S

R x1 C

7

(d)

11. In each diagram below, prove: (i) �PAT ||| �QBT , (ii) AP ‖ QB.

P

Q

T
A

BO
Z

(a)

A
O

Z
TB

Q

P

(b)

R S
O

T B
A

12. (a)

Prove that BA = AS.
[Hint: Join TO and TS,
then let � R = θ.]

T P

M
O

S
(b)

Given that PT = PM , prove that
PO is perpendicular to SO.
[Hint: Let � TMP = θ.]

13. Construction: Construct the circle with a given point as centre and tangential to a
given line not passing though the point. Use the fact that a tangent is perpendicular to
the radius at the point of contact to find a ruler-and-compasses construction of the circle.

B R C

A

T

S

�

�

k
k

m

m

14. (a)

Suppose that the circle RST is inscribed
in �ABC. Prove that k = 1

2 (−a + b + c),
� = 1

2 (a − b + c) and m = 1
2 (a + b − c).

A

B CR

S

T

�

�

k
k

m

m

(b)

Suppose further that � ABC = 90◦. Prove

that k =
�(m + �)
m − �

, and find a, b and c in

terms of � and m.

15. Theorem: Suppose that two circles touch externally, and fit inside a larger circle which
they touch internally. Then the triangle formed by the three centres has perimeter equal
to the diameter of the larger circle. Prove this theorem using a suitable diagram.
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F

A

B

O Z

G

16. (a) Two circles with centres O and Z intersect at A and B
so that the diameters AOF and AZG are each tangent
to the other circle.

(i) Prove that F , B and G are collinear.

(ii) Prove that �AGB ||| �FAB, and hence prove that
AB is the geometric mean of FB and GB (meaning
that AB2 = FB × GB).

F B

A

G

(b) Conversely, suppose that AB is the altitude to the hy-
potenuse of the right triangle AFG. Prove that the
circles with diameters AF and AG intersect again at B,
and are tangent to AG and AF respectively.

17. (a) Two circles of radii 5 cm and 3 cm touch externally. Find the length of the direct
common tangent.

(b) Two circles of radii 17 cm and 10 cm intersect, with a common chord of length 16 cm.
Find the length of the direct common tangent.

(c) Two circles of radii 5 cm and 4 cm are 3 cm apart at their closest point. Find the
lengths of the direct and indirect common tangents.

18. Prove the following general cases of the previous question.

(a) Theorem: The direct common tangent of two circles touching externally is the
geometric mean of their diameters (meaning that the square of the tangent is the
product of the diameters).

(b) Theorem: The difference of the squares of the direct and indirect common tangents
of two non-overlapping circles is the product of the two diameters.

A

B C

I

L

M
N

α α

β
β

19. The incentre theorem: The angle bisectors of the ver-
tices of a triangle are concurrent, and their point of intersec-
tion (called the incentre) is the centre of a circle (called the
incircle) tangent to all three sides. In the diagram opposite,
the angle bisectors of � A and � B of �ABC meet at I. The
intervals IL, IM and IN are perpendiculars to the sides.

(a) Prove that �AIN ≡ �AIM and �BIL ≡ �BIN .

(b) Prove that IL = IM = IN .

(c) Prove that �CIL ≡ �CIM .

(d) Complete the proof.

A B P

T

8

5 O

20. (a)

Trigonometry: The figure ATB in the
diagram above is a semicircle. Find the
exact values of the lengths TP and BP .

30º 30º

6 m

A

B CR

ST
(b)

Mensuration: This window is made in
four pieces. Find the area of the small
piece AST exactly and approximately.
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E X T E N S I O N

O ZM
T

x

r s

R

P

S

21. (a) Theorem: If two circles touch, the tangents to the
two circles from a point outside both of them are equal
if and only if the point lies on the common tangent at
the point of contact.
In the diagram to the right, use Pythagoras’ theorem to
prove that PR = PS if and only if x = 0.

(b) Theorem: Given three circles such that each pair of
circles touches externally, the common tangents at the
three points of contacts are equal and concurrent. They meet at the incentre of the
triangle formed by the three centres, and the incircle passes through the three points
of contact. Use the result of part (a) to prove this theorem.

22. (a) Three circles of equal radius r are placed so that each is tangent to the other two.
Find the area of the region contained between them, and the radius of the largest
circle that can be constructed in this region.

(b) Four spheres of equal radius r are placed in a stack so that each touches the other
three. Find the height of the stack.

23. (a) Construction: Given two intersecting lines, construct the four circles of a given
radius that are tangential to both lines.

(b) Construction: Given two non-intersecting circles, construct their direct and indi-
rect common tangents.

24. (a) Theorem: Suppose that there are three circles of three different radii such that no
circle lies within any other circle. Prove that the three points of intersection of the
direct common tangents to each pair of circles are collinear. [Hint: Replace the three
circles by three spheres lying on a table, then the direct common tangents to each
pair of circles form a cone.]

(b) Theorem: Prove that the orthocentre of a triangle is the incentre of the triangle
formed by the feet of the three altitudes.

9 F The Alternate Segment Theorem
The word ‘alternate’ means ‘the other one’. In the diagram below, the chord AB
divides the circle into two segments — the angle α = � BAT lies in one of the
segments, and the angle APB lies in the other segment. The alternate segment
theorem claims that the two angles are equal.

The Alternate Segment Theorem: Stating the theorem verbally:

22
COURSE THEOREM: The angle between a tangent to a circle and a chord at the

point of contact is equal to any angle in the alternate segment.

Given: Let AB be a chord of a circle with centre O, and let SAT be the tangent
at A. Let � APB be an angle in the alternate (other) segment to � BAT .

Aim: To prove that � APB = � BAT .

Construction: Construct the diameter AOQ from A, and join BQ.
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Proof: Let � BAT = α.

Since � QAT = 90◦ (radius and tangent),
� BAQ = 90◦ − α.

Again, since � QBA = 90◦ (angle in a semicircle),
� Q = α. α

S A T

O

P
B

Q

Hence � P = � Q = α (angles on the same arc BA).

P

O

T

S

A
α

α

WORKED EXERCISE: In the diagram below, AS and AT
are tangents to a circle with centre O, and � A = � P = α.
(a) Find α. (b) Prove that T , A, S and O are concyclic.

SOLUTION:

(a) First, � AST = α (alternate segment theorem).
Secondly, � ATS = α (alternate segment theorem).
Hence �ATS is equilateral, and α = 60◦.

(b) � SOT = 120◦ (angles on the same arc ST ),
so � A and � SOT are supplementary.
Hence TASO is a cyclic quadrilateral.

A
S

T

B

WORKED EXERCISE: In the diagram below, AT and BT are tangents.
(a) Prove that �ATS ||| �TBS.
(b) Prove that AS × BS = ST 2 .
(c) If the points A, S and B are collinear, prove that TA

and TB are diameters.

SOLUTION:

(a) In the triangles ATS and TBS:
1. � ATS = � TBS (alternate segment theorem),
2. � TAS = � BTS (alternate segment theorem),

so �ATS ||| �TBS (AA).

(b) Using matching sides of similar triangles,
AS

ST
=

ST

BS

AS × BS = ST 2 .

(c) First, � TSA = � TSB (matching angles of similar triangles).
Secondly, � TSA and � TSB are supplementary (angles on a straight line).
Hence � TSA = � TSB = 90◦.
Since TA and TB subtend right angles at the circumference, they are diameters.

Exercise 9F
Note: In each question, all reasons must always be given. Unless otherwise indicated,
points labelled O or Z are centres of the appropriate circles, and the obvious lines at points
labelled R, S, T and U are tangents.
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1. State the alternate segment theorem, and draw several diagrams, with tangents and chords
in different orientations, to illustrate it.

2. Find α, β, γ and δ in each diagram below.

P T Q

A

B

α
β

50º
70º

(a)

65º

A

B

C

α

α

G

F

β

(b)

60º

E T

S

α

β

γ

(c)
A T B

P Q
70º

αβ γ

(d)

62º

50º

α β

(e)

40º
A

β

α

S

T
B

(f)

64º

72º

β

α

γ
G T E

S

F
P

(g)

50º

β α
P T Q

O

A

B

(h)

70º

β α

γ
48º

UB A

C

T
S

(i)

70º 80º

80º

α β

γ
δ

(j)

30º

F T G

A B

P

α β

(k)

110º
25º

A

T

B
R

P Q

M

α
γ

β

(l)

3. In each diagram below, express α, β and γ in terms of θ.

A

B

T E
θαγ

β

(a)

P T Q

A B

G
γ

βα θ

(b)
θα

β

(c)

θγ

α δ
β

(d)

4. In each diagram below, PTQ is a tangent to the circle.

αα
P T Q

A

B

(a)

Prove that
BT = BA.

P T Q

A B

(b)

Prove that
TA = TB.

P T Q

A B

(c)

Prove that
AB ‖ PTQ.

P T Q

A

B

(d)

Prove that BT
bisects � ATQ.
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S

T

A

B

β

α
40º

5. (a)

The line SB is a tangent, and AS = AT .
Find α and β.

65º
α

β
γ

O

T

S

P

D

(b)

The tangents at S and T meet at the cen-
tre O. Find α, β and γ.

D E V E L O P M E N T

S A T
α

O

P
B

6. Another proof of the alternate segment theorem:
Let AB be a chord of a circle, and let SAT be the tan-
gent at A. Let � APB be an angle in the alternate segment
to � BAT .
(a) Let α = � BAT , and find � OAB.
(b) Find � OBA and � AOB. (c) Hence show that � P = α.

Y

XQ

P

A

B

α
T

7. (a)

The two circles touch externally at T , and
XTY is the common tangent at T . Prove
that AB ‖ QP .

Y

X
Q

P

A

B

α

T

(b)

The two circles touch externally at T , and
XTY is the common tangent there. Prove
that the points Q, T and B are collinear.

S

T
A

B

βα

8. (a)

The lines SA and SB are tangents.
(i) Prove that � SAT = � BST .
(ii) Prove that �SAT ||| �BST .
(iii) Prove that AT × BT = ST 2 .

S

T
A

B

β

α

(b)

The lines SA and TB are tangents.
(i) Prove that AT ‖ SB.
(ii) Prove that �SAT ||| �BTS.
(iii) Prove that AT × BS = ST 2 .

S

T

A

B

α

C

9. (a)

The line TC is a tangent.
Prove that TA ‖ CB.

S

T

A

B

α

P
Q

(b)

The lines SB and PBQ are tangents.
Prove that SA ‖ PBQ.
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T E

A

G

B

α α

β

10. (a)

The line TG bisects � BTA, and ET is
a tangent. Prove that ET = EG.

S

T
A

B

α

U

P

Q

(b)

The line STU is a tangent parallel to PQ.
Prove that Q, B and T are collinear.

11. Investigate what happens in question 6, parts (a) and (b), when the two circles touch
internally. Draw the appropriate diagrams and prove the corresponding results.

X

YA

S

T

Bα
βU

12. ST is a direct common tangent to two circles touching ex-
ternally at U , and XUY is the common tangent at U .

(a) Prove that AT ⊥ BS.

(b) Prove that AS and BT are parallel diameters.

(c) Explain why if the two circles have different diameters,
then AB is not a tangent to either circle.

(d) Prove that the circle through S, U and T has centre X
and is tangent to AS and BT .

S
T

A
B

α
U

R

β

F

G

13. RSTU is a direct common tangent to the two circles.

(a) Prove that � RSA = � UTB.

(b) Prove that �AST ||| �STB.

(c) Prove that ST 2 = AS × BT .

(d) Prove that if the points A, G and B are collinear,
then � SFA = 60◦.

M
A

B

P

Q14. A locus problem: Two circles of equal radii intersect at
A and B. A variable line through A meets the two circles
again at P and Q.

(a) Prove that � QPB = � PQB.

(b) Prove that BM ⊥ PQ, where M is the midpoint of PQ.

(c) What is the locus of M , as the line PAQ varies?

(d) What happens when Q lies on the minor arc AB?

S T

A B M

15. (a)

If ST ‖ AB and TM is a tangent, prove
that �TMB ||| �TAS.

A

B

T

S(b)

If the circles are tangent at S, and ATB is
a tangent, prove that TS bisects � ASB.
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E X T E N S I O N

G

A
α

α

T
S

H

P

B

16. The converse of the alternate segment theorem:
Suppose that the line SAT passes through the vertex A
of �ABP and otherwise lies outside the triangle. Suppose
also that � BAT = � APB = α. Then the circle through A,
B and P is tangent to SAT . Construct the circle through
A, B and P , and let GAH be the tangent to the circle at A.
(a) Prove that � BAH = α.
(b) Hence explain why the lines SAT and GAH coincide.

A
B

C

M

Q

P

R

17. Theorem: Let equilateral triangles ABR, BCP and CAQ
be built on the sides of an acute-angled triangle ABC. Then
the three circumcircles of the equilateral triangles intersect
in a common point, and this point is the point of intersection
of the three concurrent lines AP , BQ and CR. Construct
the circles through A, C and Q and through A, B and R,
and let the two circles meet again at M .
(a) Prove that � AMC = � AMB = 120◦.
(b) Prove that P , C, M and B are concyclic.
(c) Prove that � AMQ = 60◦.
(d) Hence prove the theorem.

18. The alternate segment theorem has an interesting relationship with the earlier theorem
that two angles at the circumference subtended by the same arc are equal. Go back to
that theorem (see Box 13), and ask what happens to the diagram as Q moves closer and
closer to A. The alternate segment theorem describes what happens when Q is in the
limiting position at A.

a b

cd

θ

ψ

19. A maximisation theorem: A cyclic quadrilateral has
the maximum area of all quadrilaterals with the same side
lengths in the same order. Let the quadrilateral have fixed
side lengths a, b, c and d, and variable opposite angles θ
and ψ as shown. Let A be its area.
(a) Explain why A = 1

2 ab sin θ + 1
2 cd sinψ.

(b) By equating two expressions for the diagonal, and differentiating implicitly with re-
spect to θ, prove that

dψ

dθ
=

ab sin θ

cd sinψ
.

(c) Hence prove that
dA

dθ
=

ab sin(θ + ψ)
2 sin ψ

, and thus prove the theorem.

9 G Similarity and Circles
The theorems of the previous sections have concerned the equality of angles at
the circumference of a circle. In this final section, we shall use these equal angles
to prove similarity. The similarity will then allow us to work with intersecting
chords, and with secants and tangents from an external point.
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Intercepts on Intersecting Chords: When two chords intersect, each is broken into two
intervals called intercepts. The first theorem tells us that the product of the
intercepts on one chord equals the product of the intercepts on the other chord.

23
COURSE THEOREM: If two chords of a circle intersect, the product of the intercepts

on the one chord is equal to the product of the intercepts on the other chord.

Given: Let AB and PQ be chords of a circle intersecting at M .

Aim: To prove that AM × MB = PM × MQ.

Construction: Join AP and BQ.

Proof: In the triangles APM and QBM :
1. � A = � Q (angles on the same arc PB),
2. � AMP = � QMB (vertically opposite angles),

so �APM ||| �QBM (AA).
Q

P
B

M

A

Hence
AM

QM
=

PM

BM
(matching sides of similar triangles),

that is, AM × MB = PM × MQ.

Intercepts on Secants: When two chords need to be produced outside the circle, be-
fore they intersect, the same theorem applies, provided that we reinterpret the
theorem as a theorem about secants from an external point. The intercepts are
now the two intervals on the secant from the external point.

24
COURSE THEOREM: Given a circle and two secants from an external point, the

product of the two intervals from the point to the circle on the one secant is
equal to the product of these two intervals on the other secant.

Given: Let M be a point outside a circle,
and let MAB and MPQ be secants to the circle.

Aim: To prove that AM × MB = PM × MQ.

Construction: Join AP and BQ.

Proof: In the triangles APM and QBM :

B
A

M

P

Q
1. � MAP = � MQB (external angle of cyclic quadrilateral),
2. � AMP = � QMB (common),

so �APM ||| �QBM (AA).

Hence
AM

QM
=

PM

BM
(matching sides of similar triangles),

that is, AM × MB = PM × MQ.

Intercepts on Secants and Tangents: A tangent from an external point can be regarded
as a secant meeting the circle in two identical points. With this interpretation,
the previous theorem still applies.

25

COURSE THEOREM: Given a circle, and a secant and a tangent from an external
point, the product of the two intervals from the point to the circle on the
secant is equal to the square of the tangent.

In other words, the tangent is the geometric mean of the intercepts on the secant.
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Recall the definitions of arithmetic and geometric means of two numbers a and b:
• The arithmetic mean is the number m such that b − m = m − a.

That is, 2m = a + b or m =
a + b

2
.

• The geometric mean is the number g such that
b

g
=

g

a
.

That is, g2 = ab, or (if g is positive) g =
√

ab.

Given: Let M be a point outside a circle. Let MAB be a secant to the circle,
and let MT be a tangent to the circle.

Aim: To prove that AM × MB = TM 2 .

Construction: Join AT and BT .

Proof: In the triangles ATM and TBM :

T

A

B

M

1. � ATM = � TBM (alternate segment theorem),
2. � AMT = � TMB (common),

so �ATM ||| �TBM (AA).

Hence
AM

TM
=

TM

BM
(matching sides of similar triangles),

that is, AM × MB = TM 2 .

WORKED EXERCISE: Find x in the two diagrams below.

6
6

8x
(a)

x

5

6

(b)

SOLUTION:

(a) 8(x + 8) = 6 × 12
(intercepts on intersecting chords)

x + 8 = 9
x = 1.

(b) x(x + 5) = 62 (tangent and secant)
x2 + 5x − 36 = 0

(x + 9)(x − 4) = 0
x = 4 (x must be positive).

Exercise 9G
Note: In each question, all reasons must always be given. Unless otherwise indicated,
points labelled O or Z are centres of the appropriate circles, and the obvious lines at points
labelled R, S, T and U are tangents.

1. Find x in each diagram below.

4 3

12
x

(a)

x

x
4

7

(b)

6

4

5

x

(c)

9

9

x

(d)

ISBN: 978-1-107-61604-2 
Photocopying is restricted under law and this material must not be transferred to another party 

© Bill Pender, David Sadler, Julia Shea, Derek Ward 2012 Cambridge University Press



� �CHAPTER 9: Circle Geometry 9G Similarity and Circles 385

5

10x

(e)

7

2

x

x

(f)

12

x

8

(g)

11

44

x
(h)

C
O

2
3

M

D

A

B

x

2. (a)

(i) Explain why MB = x.
(ii) Find x.
(iii) Find the area of CADB.

C
O

2

5

5

M

D

A

B

(b)

(i) Explain why CD ⊥ AB.
(ii) Find the radius OC.
(iii) Find the area of CADB.

D E V E L O P M E N T

S
T

A

B

K3. Theorem: When two circles intersect, the common chord
of the two circles bisects each direct common tangent.
In the diagram, ST is a direct common tangent.

(a) Give a reason why SK2 = KA × KB.

(b) Hence prove that SK = TK.

A
C

B

D

M

4. Converse of the intersecting chords theorem: If
the products of the intercepts on two intersecting intervals
are equal, then the four endpoints of the two intervals are
concyclic.
In the diagram opposite, AM × BM = CM × DM .

(a) Prove that
AM

CM
=

DM

BM
.

(b) Prove that �AMC ||| �DMB.

(c) Prove that � CAM = � BDM .

(d) Prove that ACBD is cyclic.

M

A
B

C

D

5. Converse of the secants from an external point
theorem: Let two intervals ABM and CDM meet at their
common endpoint M , and suppose that

AM × BM = CM × DM.

Then ABDC is cyclic.

(a) Prove that �AMC ||| �DMB.

(b) Prove that � CAM = � BDM .

(c) Prove that ACBD is cyclic.
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a b

x

P

BA

Q

MO

6. The arithmetic and geometric means:
(a) Give a reason why MQ = x.
(b) Prove that x is the geometric mean of a and b, that is,

x =
√

ab .
(c) Prove that the radius of the circle is the arithmetic mean

of a and b, that is, r = 1
2 (a + b).

(d) Prove that, provided a �= b, the arithmetic mean of a
and b is greater than their geometric mean.

d
O

B

x

y
M

tT A

7. The altitude to the hypotenuse:
In the diagram opposite, AT is a tangent.
(a) Show that t2 = y(x + y).
(b) Show that d2 + t2 − x2 − y2 = 2xy.
(c) Show that TM ⊥ BA.
(d) Where does the circle with diameter TA meet the first circle?
(e) Where does the circle with diameter AB meet the first circle?
(f) Use part (d) to show that d2 = x(x + y).
(g) Show that �ATM ||| �TBM ||| �ABT .
(h) Show that TM 2 = xy. (i) Show that tx = d × TM .

P'

P

T

FF'

S

MO

8. A construction of the geometric mean: In the dia-
gram to the right, PT and PS are tangents from an external
point P to a circle with centre O.
(a) Prove that �OTM ||| �TPM .
(b) Prove that TM 2 = OM × PM .
(c) Prove that OM × OP = OM × MP + OM 2.
(d) Show that OF is the geometric mean of OM and OP

(that is, prove that OF 2 = OM × OP ).

P'

P

T

FF'

S

MO
α

9. (a)

Theorem: In the diagram, PTP ′ and PS
are tangents. Let � TF ′M = α.
(i) Prove that � FTP = α.
(ii) Prove that FT bisects � MTP .
(iii) Prove that F ′T bisects � MTP ′.

P

T

F
F'

S

MO

α
α

(b)

Converse theorem: In the diagram,
TS ⊥ F ′OF , and � FTM = � FTP = α.
(i) Prove that � TF ′M = α.
(ii) Prove that OT ⊥ TP .
(iii) Prove that TP is a tangent.

A

B

ZO
2θ 2φ

r s

C D
10. (a) Trigonometry with overlapping circles: Sup-

pose that two circles C and D of radii r and s respectively
overlap, with the common chord subtending angles of 2θ
and 2φ at the respective centres of C and D. Show that
the ratio sin θ : sin φ is independent of the amount of
overlap, being equal to s : r. What happens when 2θ is
reflex?
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V

A

S

T

O θ
θ

U

r
s

(b) Trigonometry with touching circles: Suppose
that two circles touch externally, and that their radii are
r and s, with r > s. Let their direct common tangents
meet at an angle 2θ. Show that

r

s
=

1 + sin θ

1 − sin θ
.

E X T E N S I O N

A

B

C

D

E

M
X

Y

11. Theorem: Given three circles such that each pair of circles
overlap, then the three common chords are concurrent.
In the diagram opposite, the common chords AB and CD
meet at M , and the line EM meets the two circles again at
X and Y .
(a) By applying the intersecting chord theorem three times,

prove that EM × MX = EM × MY .
(b) Explain why EM must be the third common chord.
(c) Repeat the construction and proof when the common

chords AB and CD meet outside the two circles.

12. Theorem: Given three circles such that each pair of circles touch externally, then the
three common tangents at the points of contact are concurrent.
Prove this theorem by making suitable adaptions to the previous proof.

A

B

M

C

X

13. Converse of the secant and tangent theorem:
Let the intervals ABM and CM meet at their common end-
point M , and suppose that MC2 = MA × MB. Then MC
is tangent to the circle ABC.
Construct the circle ABC, and suppose by way of contra-
diction that it meets MC again at X.
(a) Prove that MA × MB = MC × MX.
(b) Hence prove that C and X coincide.

14. Harmonic conjugates: In the configuration of question 9:
(a) Prove that M divides F ′F internally in the same ratio that P divides F ′F externally.

(M is called the harmonic conjugate of P with respect to F ′ and F ).

(b) Prove that F ′F is the harmonic mean of F ′M and F ′P (meaning that
1

F ′F
is the

arithmetic mean of
1

F ′M
and

1
F ′P

).

U

O
A'

A

S

R

T

ZB B'

V

Hu
v

t t s s
rr

�

15. The radical axis theorem:
(a) Suppose that two circles with centres O and Z and

radii r and s do not overlap. Let the line OZ meet
the circles at A′, A, B and B′ as shown, and let
AB = �. Choose R on AB so that the tangents RS
and RT to the two circles have equal length t.
(i) Prove that a point H outside both circles lies

on the perpendicular to OZ through R if and
only if the tangents from H to the two circles
are equal.

(ii) Prove that AR : RB = AB′ : A′B.
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(b) Suppose that two circles with centres O and Z and radii

r and s overlap, meeting at F and G. Let the line OZ
meet the circles at A′, A, B and B′ as shown, with
AB = �. Let OZ meet FG at R.
(i) Prove that if H is any point outside both circles,

then H lies on FG produced if and only if the tan-
gents from H to the two circles are equal.

(ii) Prove that AR : RB = AB′ : A′B.

16. Constructions to square a rectangle, a triangle and a polygon:
(a) Use the configuration in question 6 to construct a square whose area is equal to the

area of a given rectangle.
(b) Construct a square whose area is equal to the area of a given triangle.
(c) Construct a square whose area is equal to the area of a given polygon.

17. Construction: Construct the circle(s) tangent to a given line and passing through two
given points not both on the line.

18. Geometric sequences in geometry: In the diagram below, ABCD is a rectangle
with AB : BC = 1 : r. The line through B perpendicular to the diagonal AC meets AC
at M and meets the side AD at F . The line DM meets the side AB at G.

M

GA B

F

D C

(a) Write down five other triangles similar to �AMF .
(b) Show that the lengths FA, AB and BC form a GP.
(c) Find the ratio AG : GB in terms of r, and find r if AG

and GB have equal lengths.
(d) Is it possible to choose the ratio r so that DG is a com-

mon tangent to the circles with diameters AF and BC
respectively?

(e) Is it possible to choose the ratio r so that the points D,
F , G and B are concyclic and distinct?

19. A difficult theorem: Prove that the tangents at opposite vertices of a cyclic quadri-
lateral intersect on the secant through the other two vertices if and only if the two products
of opposite sides of the cyclic quadrilateral are equal.

Online Multiple Choice Quiz
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