CHAPTER NINE

Circle Geometry

Circles have already been studied using coordinate methods, and circles were essential in the development of the trigonometric functions. Many important properties of circles, however, remain to be developed, and the methods of Euclidean geometry are particularly suited to this task - first, the circle is easily defined geometrically in terms of centre and radius, compasses being designed to implement this definition, and secondly, angles are handled far more easily in Euclidean geometry than in coordinate geometry.
Study Notes: Although this material may be familiar from earlier years, the emphasis now is less on numerical work and more on the logical development of the theory and on its applications to the proof of further results. Most students will therefore find the chapter rather demanding. Sections 9A-9D deal with angles at the centre and circumference of circles. Three difficult converse theorems here are quite new - these converses concern the circumcircle of a right triangle, and two tests for the concyclicity of four points. Sections 9E-9G then examine tangents to circles and the angles they form with diameters and chords.
As in the previous chapter, all the course theorems have been boxed. Some proofs are written out in the notes, and some are presented in structured questions placed at the start of the following development section. All these proofs are important - working through these proofs is an essential part of the course.

Some of the Extension sections of these exercises are longer than normal, but 3 Unit students should be reassured that these questions, as always, are beyond the standards of the 3 Unit HSC papers. The 4 Unit HSC papers usually contain a difficult geometry question, and many of the standard results associated with these questions have therefore been included in the Extension sections.

9 A Circles, Chords and Arcs

The first group of theorems concern angles at the centre of a circle and their relationship with chords and arcs. The section ends with the crucial theorem that any set of three non-collinear points lie on a unique circle. First, some definitions:

CIrcle, centre, radius, tangent, secant, Chord, diameter:

- A circle is the set of all points that are a fixed distance (called the radius) from a given point (called the centre).
- A radius is the interval joining the centre and any point on the circle.
- A tangent is a line touching a circle in one point.
- A secant is the line through two distinct points on a circle.
- A chord is the interval joining two distinct points on a circle.
- A diameter is a chord through the centre.
- Two circles with a common centre are called concentric.

Subtended angles: We shall speak of subtended angles throughout this chapter, particularly angles subtended by chords of circles at the centre and at a point on the circumference.

Angles subtended by an interval: The angle sub-
2 tended at a point P by an interval $A B$ is the angle $\angle A P B$ formed at P by joining $A P$ and $B P$.

A Chord and the Angle Subtended at the Centre: The straightforward congruence proofs of this theorem and its converse have been left to the following exercise.

Course theorem: In the same circle or in circles of equal radius:
3 - Chords of equal length subtend equal angles at the centre.

- Conversely, chords subtending equal angles at the centre have equal lengths.

$\angle A O B=\angle X O Y$
(equal chords $A B$ and $X Y$ subtend equal angles at the centre O).

$A B=X Y$
(chords subtending equal angles at the centre O are equal).

Worked Exercise: In the diagram below, the chords $A B, B C$ and $C D$ have equal lengths. Prove that $A C=B D=5$, then find $A D$.
Solution: The three equal chords subtend equal angles at the centre O,
so $\quad \angle A O B=\angle B O C=\angle C O D=30^{\circ}$,
and $\quad \angle A O C=60^{\circ}$.
But

$$
O A=O C \quad(\text { radii })
$$

so $\triangle O A C$ is equilateral, and $A C=5$.
Similarly, $\triangle O B D$ is equilateral, and $B D=5$.
Secondly, $A D^{2}=5^{2}+5^{2} \quad$ (Pythagoras),

hence $\quad A D=5 \sqrt{2}$.

Arcs, Sectors and Segments: Here again are the basic definitions.

Arcs, sectors and segments:

- Two points on a circle dissect the circle into a major arc and a minor arc, called opposite arcs.
4 - Two radii of a circle dissect the region inside the circle into a major sector and a minor sector, called opposite sectors.
- A chord of a circle dissects the region inside the circle into a major segment and a minor segment, called opposite segments.

A fundamental assumption of the course is that arc length is proportional to the angle subtended at the centre. In particular, we shall assume that:

Course assumption: In the same circle or in circles of equal radius:

- Equal arcs subtend equal angles at the centre.

5

- Conversely, arcs subtending equal angles at the centre are equal.
- Equal arcs cut off equal chords.
- Conversely, equal chords cut off equal arcs.

The first two statements can be proven informally by rotating one arc onto the other. The last two statements then follow from the first two, using the previous theorem. In the following diagrams, O is the centre of each circle.

$\angle A O B=\angle X O Y$ and
$A B=X Y(\operatorname{arcs} A B$ and $X Y$ are equal).

$\operatorname{arc} A B=\operatorname{arc} X Y \quad(\operatorname{arcs}$ subtending equal angles at the centre are equal).

$\operatorname{arc} A B=\operatorname{arc} X Y$
(equal chords $A B$ and $X Y$ cut off equal arcs).

Worked Exercise: Two equal chords $A B$ and $X Y$ of a circle intersect at E. Use equal arcs to prove that $A X=B Y$ and that $\triangle E B X$ is isosceles.

Solution:

First, $\quad \operatorname{arc} A B=\operatorname{arc} X Y \quad$ (equal chords cut off equal arcs),
so $\quad \operatorname{arc} A X=\operatorname{arc} B Y \quad$ (subtracting $\operatorname{arc} X B$ from each arc),
so $\quad A X=B Y \quad$ (equal arcs cut off equal chords).
Secondly, $\triangle A B X \equiv \triangle Y X B \quad$ (SSS),
so $\quad \angle A B X \equiv \angle Y X B \quad$ (matching angles of congruent triangles),
hence $\quad E X=E B \quad$ (opposite angles are equal).

Chords and Distance from the Centre: The following theorem and its converse about the distance from a chord to the centre are often combined with Pythagoras' theorem in mensuration problems about circles. They are proven in the exercises.

COURSE THEOREM: In the same circle or in circles of equal radius:
6

- Equal chords are equidistant from the centre.
- Conversely, chords that are equidistant from the centre are equal.

If $\quad A B=X Y$,
then $O M=O N$ (equal chords are equidistant from the centre O).

If $O M=O N$,
then $A B=X Y$ (chords equidistant from the centre O are equal).

Chords, Perpendiculars and Bisectors: The radii from the endpoints of a chord are equal, and so the chord and the two radii form an isosceles triangle. The following important theorems are really restatements of theorems about isosceles triangles.

COURSE THEOREM:

- The perpendicular from the centre of a circle to a chord bisects the chord.

7

- Conversely, the interval from the centre of a circle to the midpoint of a chord is perpendicular to the chord.
- The perpendicular bisector of a chord of a circle passes through the centre.

Proof:

A. To prove the first part, let $A B$ be a chord of a circle with centre O.

Let the perpendicular from O meet $A B$ at M. We must prove that $A M=M B$.
In the triangles $A M O$ and $B M O$:

1. $O M=O M \quad$ (common),
2. $O A=O B \quad$ (radii),
3. $\angle O M A=\angle O M B=90^{\circ}$ (given),
so $\quad \triangle A M O \equiv \triangle B M O \quad$ (RHS).
Hence $\quad A M=B M \quad$ (matching sides of congruent triangles).

B. To prove the second part, let $A B$ be a chord of a circle with centre O.

Let M be the midpoint of $A B$. We must prove that $O M \perp A B$.
In the triangles $A M O$ and $B M O$:

1. $O M=O M$ (common),
2. $O A=O B \quad$ (radii),
3. $A M=B M$ (given),
so $\quad \triangle A M O \equiv \triangle B M O \quad$ (SSS).

Hence $\angle A M O=\angle B M O$ (matching angles of congruent triangles).
But $A M B$ is a straight line, and so $\angle A M O=90^{\circ}$.
C. To prove the third part, let $A B$ be a chord of a circle with centre O. As proven in the first part, the perpendicular from O to $A B$ bisects $A B$, and hence is the perpendicular bisector of $A B$. Hence the perpendicular bisector of $A B$ passes through O, as required.

Worked Exercise: In a circle of radius 6 units, a chord of
 length 10 units is drawn.
(a) How far is the chord from the centre?
(b) What is the sine of the angle between the chord and a radius at an endpoint of the chord?
Solution: Let the centre be O and the chord be $A B$.
Construct the perpendicular $O M$ from O to $A B$, and join the radius $O A$.
(a) Then $A M=M B$ (perpendicular from centre to chord), so $\quad O M^{2}=6^{2}-5^{2} \quad$ (Pythagoras), and $\quad O M=\sqrt{11}$.
(b) Also, $\sin \alpha=\frac{1}{6} \sqrt{11}$.

Constructing the Centre of a Given Circle: The third part of the previous theorem gives a method of constructing the centre of a given circle.

Course construction: Given a circle, construct
8 any two non-parallel chords, and construct their perpendicular bisectors. The point of intersection of these bisectors is the centre of the circle.

Proof: Since every perpendicular bisector passes through the centre, the centre must lie on every one of them, so the centre must be their single common point.

Constructing the Circle through Three Non-collinear Points: Any two distinct points determine a unique line. Three points may or may not be collinear, but if they are not, then they lie on a unique circle, constructed as described here.

COURSE THEOREM: Given any three non-collinear points, there is one and only
9 one circle through the three points. Its centre is the intersection of any two perpendicular bisectors of the intervals joining the points.

The circle is called the circumcircle of the triangle formed by the three points, and its centre is called the circumcentre.

Given: Let $A B C$ be a triangle, and let O be the intersection of the perpendicular bisectors $O P$ and $O Q$ of $B C$ and $C A$ respectively.

Aim: To prove:
A. The circle with centre O and radius $O C$ passes through A and B.
B. Every circle through A, B and C has centre O and radius $O C$.

Construction: Join $A O, B O$ and $C O$.

Proof:

A. In the triangles $B O P$ and $C O P$:

1. $O P=O P$ (common),
2. $B P=C P \quad$ (given),
3. $\angle B P O=\angle C P O=90^{\circ} \quad$ (given),
so $\quad \triangle B O P \equiv \triangle C O P \quad$ (SAS).
Hence $\quad B O=C O \quad$ (matching sides of congruent triangles).

Similarly, $\triangle A O Q \equiv \triangle C O Q$ and $A O=C O$.
Hence $\quad B O=C O=A O$, and the circle with centre O and radius $O C$ passes through A and B.
B. Now suppose that some circle with centre Z passes through A, B and C. We have already shown that the perpendicular bisector of a chord passes through the centre, and so Z lies on both $O P$ and $O Q$. Hence O and Z coincide, and the radius is $O C$.

Exercise 9A

Note: In each question, all reasons must always be given. Unless otherwise indicated, any point labelled O is the centre of the circle.

1. In part (c), O and Z are the centres of the two circles of equal radii.
(a)

Prove that $\triangle O A B$ is isosceles.
(d)

Prove that arcs $A L$ and $M B$ have equal lengths.

Prove that $\triangle O F G$ is equilateral.
(e)

Prove that $A F B G$ is a parallelogram.
(c)

Prove that $O S Z T$ is a rhombus.
(f)

Prove that $A B C D$ is a rectangle.
2. Find α, β, γ and δ. In parts (g) and (h), prove that $\operatorname{arc} A B C=\operatorname{arc} B C D$ and $A C=B D$.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

3. (a)

Find $A O$.
(b)

Find $F H$ and $\cos \alpha$.
(c)

Find $O X, Q R$ and $\cos \alpha$.
4. Construction: Construct the centre of a given circle.
(a) Trace the circle drawn to the right, then use the construction given in Box 8 to find its centre.
(b) Trace it again, then use and explain this alternative construction. Construct any chord $A B$, and construct its perpendicular bisector - let the bisector meet the circle at P and Q, and construct the midpoint O of $P Q$.

5. Construction: Construct the circumcircle of a given triangle. Place three non-collinear points towards the centre of a page, then use the construction given in Box 9 to construct the circle through these three points.
\qquad
6. Course Theorem: Equal chords subtend equal angles at the centre, and are equidistant from the centre.
In the diagram opposite, $A B$ and $X Y$ are equal chords.
(a) Prove that $\triangle A O B \equiv \triangle X O Y$.
(b) Prove that $\angle A O B=\angle X O Y$.
(c) Prove that the chords are equidistant from the centre.

7. Course Theorem: Two chords subtending equal angles at the centre have equal lengths. In the diagram opposite, the angles $\angle A O B$ and $\angle X O Y$ subtended by $A B$ and $X Y$ are equal.
(a) Prove that $\triangle A O B \equiv \triangle X O Y$.
(b) Hence prove that $A B=X Y$.

9. Two parallel chords in a circle of diameter 40 have length 20 and 10 . What are the possible distances between the chords?
10. (a)

Prove that $\angle P O G=3 \beta$.
11. (a)

Prove that $A F=B G$.
[Hint: First prove that $\triangle O A F \equiv \triangle O B G$.
12. (a)

Prove that $F J=K G$, and that $M G=M J$.
(b)

Prove that $\angle T O Y=\theta$.
(b)

Prove that $A F=B F$.
[Hint: First prove that $\triangle O A F \equiv \triangle O B F$.
(b)

Prove that $\angle P A B=\angle Q A B, \quad$ Prove that $S P=S Q$, and that $A B$ is a diameter. and that $P Q \perp S T$.
13. THEOREM: When two circles intersect, the line joining their centres is the perpendicular bisector of the common chord. In the diagram opposite, two circles intersect at A and B.
(a) Prove that $\triangle O A P \equiv \triangle O B P$.
(b) Hence prove that $\triangle O M A \equiv \triangle O M B$.
(c) Hence prove that $A M=M B$ and $A B \perp O P$.

(d) Under what circumstances will $O A P B$ form a rhombus?
14. In the configuration of the previous question, suppose also that each circle passes through the centre of the other (the circles will then have the same radius).
(a) Prove that the common chord subtends 120° at each centre.
(b) Find the ratio $A B: O P$. (c) Use the formula for the area of the segment to find the ratio of the overlapping area to the area of circle \mathcal{C}.
15. THEOREM: If an isosceles triangle is inscribed in a circle, then the line joining the apex and the centre is perpendicular to the base. In the diagram opposite, $C A=C B$.
(a) Prove that $\angle C A O=\angle C B O$ and $\angle A C M=\angle B C M$.
(b) Hence prove that $C O M \perp A B$.

16. In the diagram to the right, the two concentric circles have radii 1 and 2 respectively.
(a) What is the length of the chord $A D$?
(b) How far is the chord from the centre O ?
[Hint: Let $2 x=A B=B C=C D$, and let h be the distance from the centre O. Then use Pythagoras' theorem.]
17. Trigonometry: A chord of length ℓ subtends an angle θ at the centre of a circle of radius r.
(a) Prove that $\ell^{2}=2 r^{2}(1-\cos \theta)$.
(b) Prove that $\ell=2 r \sin \frac{1}{2} \theta$.
(c) Use trigonometric identities to reconcile the two results.
18. Coordinate Geometry: Using the result of Box 9 , or otherwise, find the centre and radius of the circle passing through A, B and the origin $O(0,0)$ in each case:
(a) $A=(4,0), B=(4,8)$
(c) $A=(4,0), \triangle A B O$ equilateral
(b) $A=(4,0), B=(2,12)$
(d) $A=(6,2), B=(2,6)$
19. The ratio of the length of a chord of a circle to the diameter is $\lambda: 1$. The chord moves around the circle so that its length is unchanged. Explain why the locus of the midpoint M of the chord is a circle, and find the ratio of the areas of the two circles.
20. An n-sided regular polygon is inscribed in a circle. Let the ratio of the perimeter of the polygon to the circumference of the circle be $\lambda: 1$, and let the ratio of the area of the polygon to the area of the circle be $\mu: 1$.
(a) Find λ and μ for $n=3,4,6$ and 8 .
(b) Find expressions of λ and μ as functions of n, explain why they both have limit 1 , and find the smallest value of n for which: (i) $\lambda>0.999$ (ii) $\mu>0.999$

9 B Angles at the Centre and Circumference

This section studies the relationship between angles at the centre of a circle and angles at the circumference. The converse of the angle in a semicircle theorem is new work.

Angles in a Semicircle: An angle in a semicircle is an angle at the circumference subtended by a diameter of the circle. Traditionally, the following theorem is attributed to the early Greek mathematician Thales, and is said to be the first mathematical theorem ever formally proven.

10 COURSE THEOREM: An angle in a semicircle is a right angle.
Given: Let $A O B$ be a diameter of a circle with centre O, and let P be a point on the circle distinct from A and B.

AIM: To prove that $\angle A P B=90^{\circ}$.
Construction: Join $O P$.

Proof: Let $\angle A=\alpha$ and $\angle B=\beta$.
Now $\quad O A=O P=O B \quad$ (radii of circle),
forming two isosceles triangles $\triangle A O P$ and $\triangle B O P$,
and so $\quad \angle A P O=\alpha$ and $\angle B P O=\beta$.
But $\quad(\alpha+\beta)+\alpha+\beta=180^{\circ} \quad($ angle sum of $\triangle A B P)$,
so $\quad \alpha+\beta=90^{\circ}$, and $\angle A P B=90^{\circ}$.

Worked Exercise: Find α, and prove that A, O and D are collinear.
Solution: First, $\angle B A C=90^{\circ} \quad$ (angle in a semicircle),
so $\quad \alpha=67^{\circ} \quad$ (angle sum of $\triangle B A C$).
Secondly, $\quad \angle A C D=90^{\circ} \quad$ (co-interior angles, $A B \| C D$),
and $\quad \angle D=90^{\circ}$, (angle in a semicircle),
so $A B C D$ is a rectangle (all angles are right angles).
Since the diagonals of a rectangle bisect each other, the diagonal $A D$ passes through the midpoint O of $B C$.

Converse of the Angle in a Semicircle Theorem: The converse theorem essentially says 'every right angle is an angle in a semicircle', so its statement must assert the existence of the semicircle, given a right triangle.

Course theorem: Conversely, the circle whose diameter is the hypotenuse of a right triangle passes through the third vertex of the triangle.
11
OR
The midpoint of the hypotenuse of a right triangle is equidistant from all three vertices of the triangle.

Given: Let $A B P$ be a triangle right-angled at P.
Aim: To prove that P lies on the circle with diameter $A B$.
Construction: Complete $\triangle A P B$ to a rectangle $A P B Q$, and let the diagonals $A B$ and $P Q$ intersect at O.

Proof: The diagonals of the rectangle $A P B Q$ are equal, and bisect each other.
Hence $O A=O B=O P=O Q$, as required.

Worked Exercise: From any point P on the side $B C$ of a triangle $A B C$ right-angled at B, a perpendicular $P N$ is drawn to the hypotenuse. Prove that the midpoint M of $A P$ is equidistant from B and N.

Solution: Since $A P$ subtends right angles at N and B, the circle with diameter $A P$ passes through B and N. Hence the centre M of the circle is equidistant from B and N.

Angles at the Centre and Circumference: A semicircle subtends a straight angle at the centre, which is twice the right angle it subtends at the circumference. This relationship can be generalised to a theorem about angles at the centre and circumference standing on any arc. any angle at the circumference standing on the same arc.

The angle 'standing on an arc' means the angle subtended by the chord joining its endpoints.

Given: Let $A B$ be an arc of a circle with centre O, and let P be a point on the opposite arc.

Aim: To prove that $\angle A O B=2 \times \angle A P B$.
Construction: Join $P O$, and produce to X. Let $\angle A P O=\alpha$ and $\angle B P O=\beta$.

Case 1

Case 2

Case 3

Proof: There are three cases, depending on the position of P.
In each case, the equal radii $O A=O P=O B$ form isosceles triangles.
CASE 1: $\angle P A O=\alpha$ and $\angle P B O=\beta$ (base angles of isosceles triangles).
Hence $\angle A O X=2 \alpha$ and $\angle B O X=2 \beta \quad$ (exterior angles),
and so $\angle A O B=2 \alpha+2 \beta=2(\alpha+\beta)=2 \times \angle A P B$, as required.
The other two cases are left to the exercises.
Note: The converse of this theorem is also true, but is not specifically in the course. It is set as an exercise in the Extension section following.

Worked Exercise: Find θ and ϕ in the diagram opposite, where O is the centre of the circle.

Solution: First, $\quad \phi=70^{\circ}$ (angles on the same arc $A P B$).
Secondly, \quad reflex $\angle A O B=220^{\circ} \quad$ (angles in a revolution),
so
$\theta=110^{\circ} \quad$ (angles on the same arc $A Q B$).

Exercise 9B

Note: In each question, all reasons must always be given. Unless otherwise indicated, points labelled O or Z are centres of the appropriate circles.

1. Find α, β, γ and δ in each diagram below.
(a)

(b)

(c)

(d)

2. In each diagram, name a circle containing four points, and name a diameter of it. Give reasons for your answers.
(a)

(b)

(c)

(d)

3. A photographer is photographing the façade of a building. To do this effectively, he has to position himself so that the two ends of a building subtend a right angle at his camera. Describe the locus of his possible positions, and explain why he must be a constant distance from the midpoint of the building.
4. Construction: Constructing a right angle at the endpoint of an interval. Let $A X$ be an interval. With any centre O above or below the interval $A X$, construct a circle with radius $O A$. Let the circle pass through $A X$ again at B. Construct the diameter through B, and let it meet the circle again at C. Prove that $A C \perp A X$.

\qquad
5. Course Theorem: Complete the other two cases of the proof that the angle at the centre subtended by an arc is twice the angle at the circumference subtended by that arc.
6. Alternative proofs that an angle in a semicircle is a right angle: Let $A B$ be a diameter of a circle with centre O, and let P be any other point on the circle.
(a) Euclid's proof, Book 1, Proposition XX: Produce $A P$ to Q, and join $O P$. Let $\angle A=\alpha$ and $\angle B=\beta$.
(i) Explain why $\angle Q P B=\alpha+\beta$ and $\angle A P B=\alpha+\beta$.
(ii) Hence prove that $\angle A P B$ is a right angle.
(b) Proof using rectangles: Join $P O$ and produce it to the diameter $P O R$. Use the diagonal test to prove that
 $A P B R$ is a rectangle, and hence that $\angle A P B=90^{\circ}$.
(c) Proof using intercepts: Let M be the midpoint of $A P$. Explain why $O M \perp A P$ and $O M \| B P$. Hence prove that $\angle P$ is a right angle.
7. Alternative proofs of the converse: Let $\triangle A B P$ be right-angled at P.
(a) Proof using intercepts: Let O and M be the midpoints of $A B$ and $A P$ respectively.
(i) Prove that $O M \perp A P$.
(ii) Prove that $\triangle A O M \equiv \triangle P O M$.

(iii) Explain why O is equidistant from A, B and P.
(b) A proof using the forward theorem: Construct the circle with diameter $A B$. Let $A P$ (produced if necessary) meet the circle again at X. We must prove that the points P and X coincide.
(i) Explain why $\angle A X B=90^{\circ}$.
(ii) Explain why $P B \| X B$.

(iii) Explain why the points P and X coincide.
8. (a)

Explain why $\angle B=\alpha$, and find reflex $\angle O$. Then prove that $\alpha=120^{\circ}$.
(b)

Find α, β and γ.
(c)

Find α and β. Then prove that $A P \| B Q$.
9. In each case, prove that C is the midpoint of $A P$. In part (a), $A B=P B$.
(a)

[Hint: Join $B C$.]
(b)

[Hint: Join $O C$ and $P B$.]
(c)

[Hint: Join BC.]
10. Give careful arguments to find α, β and γ in each diagram. In part (a), prove also that $O M=M B$. [Hint: Parts (b) and (c) will need congruence.]
(a)

(b)

(c)

11. Find α, β, γ and δ in each diagram. Begin part (c) by proving that $\alpha=120^{\circ}$.
(a)

(b)

(c)

(d)

12. (a)

$A O F$ and $A Z G$ are both diameters.
(i) Join $A B$, and hence prove that $\angle A B F=\angle A B G=90^{\circ}$.
(ii) Show that the points F, B and G are collinear.
(iii) If the radii are equal, prove that $F B=B G$.
13. (a)

(i) Prove that the circles $F M H, H M G$ and $G H F$ have diameters $F H, H G$ and $G F$ respectively.
(ii) Prove that the sum of the areas of the circles $F M H$ and $G M H$ equals the area of the circle $F H G$.
(b)

A line through A meets the two circles again at P and Q. Let $\angle P=\alpha$ and $\angle Q=\beta$.
(i) Prove that $\triangle A O Z \equiv \triangle B O Z$.
(ii) Prove that $O Z$ bisects $\angle A O B$ and $\angle A Z B$.
(iii) Prove that $\angle B O Z=\alpha$ and $\angle B Z O=\beta$.
(iv) Prove that $\angle P B Q=\angle O B Z$.
(b)

(i) Prove that $\angle A=\angle C=45^{\circ}$.
(ii) Prove that $A D \perp B C$.
(iii) Prove that M lies on the circle $B D O$.
14. Minimisation: In a rectangle inscribed in a circle, let length $:$ breadth $=\lambda: 1$.
(a) Show that the ratio of the areas of the circle and the rectangle is $\frac{\pi}{4}\left(\lambda+\frac{1}{\lambda}\right)$.
(b) Prove that the ratio of the areas has its minimum when the rectangle is a square, and find this minimum ratio.
(c) Find λ when the ratio of the areas is twice its minimum value.
15. Theorem: The converse of the angle at the centre and circumference theorem.

Use the method of question 7 (c) to prove that if $\triangle A O B$ is isosceles with apex O, and a point P lies on the same side of $A B$ as O such that $\angle A O B=2 \angle A P B$, then the circle with centre O and radius $O A=O B$ also passes through C.
16. Circular motion: A horse is travelling around a circular track at a constant rate, and a punter standing at the edge of the track is following him with binoculars. Use circle geometry to prove that the punter's binoculars are rotating at a constant rate.

9 C Angles on the Same and Opposite Arcs

The previous theorem relating angles at the centre and circumference has two important consequences. First, any two angles on the same arc are equal. Secondly, two angles in opposite arcs are supplementary, or alternatively, the opposite angles of a cyclic quadrilateral are supplementary,

Angles at the Circumference Standing on the Same Arc: An angle subtended by an arc at the circumference of a circle is also called 'an angle in a segment', just as an angle in a semicircle is called 'an angle in a semicircle'. This accounts for the alternative statement of the theorem:

13
Course theorem: Two angles in the same or equal segments are equal.
OR
Two angles at the circumference standing on the same or equal arcs are equal.
The proof of this theorem relates the two angles at the circumference back to the single angle at the centre (the case of 'equal arcs' is left to the reader):
Given: Let $A B$ be an arc of a circle with centre O, and let P and Q be points on the opposite arc.
AIM: To prove that $\angle A P B=\angle A Q B$.
Construction: Join $A O$ and $B O$.
Proof: $\angle A O B=2 \times \angle A P B$ (angles on the same arc $A B$), and $\quad \angle A O B=2 \times \angle A Q B \quad$ (angles on the same arc $A B$).
Hence $\quad \angle A P B=\angle A Q B$.
Worked Exercise: Find α, β and γ in the diagram opposite.
Solution: $\alpha=15^{\circ} \quad$ (angles on the same arc $B G$),
$\beta=35^{\circ} \quad$ (exterior angle of $\left.\triangle B F M\right)$,
$\gamma=35^{\circ} \quad$ (angles on the same arc $\left.A F\right)$.

Cyclic Quadrilaterals: A cyclic quadrilateral is a quadrilateral whose vertices lie on a circle (we say that the quadrilateral is inscribed in the circle). A cyclic quadrilateral is therefore formed by taking two angles standing on opposite arcs, which is why its study is relevant here.

Course theorem:

14 - Opposite angles of a cyclic quadrilateral are supplementary.

- An exterior angle of a cyclic quadrilateral equals the opposite interior angle.

Given: Let $A B C D$ be a cyclic quadrilateral, with side $B C$ produced to T, and let O be the centre of the circle $A B C D$. Let $\angle A=\alpha$ and $\angle C=\gamma$.

AIM: To prove: (a) $\alpha+\gamma=180^{\circ} \quad$ (b) $\angle D C T=\alpha$
Construction: Join $B O$ and $D O$.
Proof: There are two angles at O, one reflex, one non-reflex.
(a) Taking angles on the arc $B C D, \angle B O D=2 \alpha \quad$ (facing C), Taking angles on the $\operatorname{arc} B A D, \angle B O D=2 \gamma \quad($ facing $A)$. Hence $2 \alpha+2 \gamma=360^{\circ} \quad$ (angles in a revolution),
so $\quad \alpha+\gamma=180^{\circ}$, as required.
(b) Also, $\angle D C T=180^{\circ}-\gamma$ (straight angle), $=\alpha$, by part (a).

Worked Exercise: In the diagram below, prove that X, A and Y are collinear.
Solution: Join $A B, A X$ and $A Y$, and let $\angle P=\theta$. $\angle X A B=180^{\circ}-\theta$
(opposite angles of cyclic quadrilateral $A B P X$).
Also $\quad \angle Q=180^{\circ}-\theta$
(co-interior angles, $P X \| Q Y$),
so $\quad \angle Y A B=\theta$
(opposite angles of cyclic quadrilateral $A B Q Y$).
Hence $\angle X A Y=180^{\circ}$, and so $X A B$ is a straight line.

Exercise 9C

Note: In each question, all reasons must always be given. Unless otherwise indicated, points labelled O or Z are centres of the appropriate circles.

1. Find α, β and γ as appropriate in each diagram below.
(a)

(b)

(c)

(d)

(e)

(i)

(f)

(j)

(g)

(k)

(h)

(1)

2. Find α, β and γ as appropriate in each diagram.
(a)

(e)
(b)

(f)
(c)

(d)

(h)

3. Suppose that $A B C D$ is a cyclic quadrilateral. Draw a diagram of $A B C D$, and then explain why $\sin A=\sin C$ and $\sin B=\sin D$.
4. (a)

Prove that $C D \| A B$.
Prove that $E C=E D$.
(b)

Prove that $\angle A=\angle B=\angle C=\angle D$.
Prove that $A D=B C$.

Prove that $\angle A C B=\alpha$.
Prove that $A C$ bisects $\angle D C B$.
(d)

Prove that $A B \perp B C$.
\qquad
\qquad
5. Alternative proof that the opposite angles of a CYCLIC QUADRILATERAL ARE SUPPLEMENTARY:
In the diagram opposite:
(a) Prove that $\angle D B C=\theta$ and $\angle B D C=\phi$.
(b) Hence prove that $\angle D A B$ and $\angle D C B$ are supplementary.
6. (a)

$A X$ bisects $\angle C A B, A Y$ bisects $\angle C A E$.
Prove that $\angle Y A X=90^{\circ}$.
Prove that $\angle Y C X=90^{\circ}$.
(c)

Give a reason why $\angle Q=\angle P$.
Prove that $A Q \| C P$.
(e)

Give a reason why $\angle B X Y=\angle B A Y$.
Prove that $A B$ bisects $\angle X B Y$.
Prove that $\angle X M B=\angle A Y B$.
(b)

Give a reason why $\angle A P B=\frac{1}{2} \theta$.
Show that $\angle B P N=\angle A Q N=180^{\circ}-\frac{1}{2} \theta$.
Show that $\angle A M B+\angle A N B=\theta$.
(d)

Give a reason why $\angle A=\angle Q$.
Prove that $\angle A P M=\angle Q P B$.
(f)

Give a reason why $\angle B A D=\angle B E Y$.
Given that $D A$ bisects $\angle B A C$, prove that $Y E$ bisects $\angle X E B$.
7. (a)

Prove that $\angle B E F=\alpha$ and find $\angle C$. Prove that $A D \| C F$.
(c)

Find $\angle B A F$ and $\angle B A H$.
Prove that H, A and F are collinear.
(e)

Give a reason why $\angle F B A=\angle F H A$.
Given that $A B$ bisects $\angle F B I$, prove that $A G=A H$.
(b)

Find $\angle A B P$ and $\angle A B Q$.
Prove that P, B and Q are collinear.
(d)

Prove that $Q G$ is a diameter. If the radii are equal, prove that $Q G \| F P$.
(f)

Give a reason why $\angle Q=\angle G$.
Given that $F B G$ and $P B Q$ are straight lines, prove that $\angle F A P=\angle G A Q$.
8. In each diagram, prove that $\triangle A M Q\|\| P M B$. Then find $M B$.

(c)

(d)

9. Theorem: Let the two pairs of opposite sides of a cyclic quadrilateral meet, when produced, at X and Y respectively. Then the angle bisectors of $\angle X$ and $\angle Y$ are perpendicular. In the diagram opposite:
(a) Explain why $\angle X D A=\theta$.
(b) Using $\triangle X G D$ and $\triangle X F B$, prove that $\angle X G D=\phi$.
(c) Using $\triangle M Y F$ and $\triangle M Y G$, prove that $Y M \perp X M$.
(d) How should this theorem be restated when a pair of opposite sides is parallel?

10. THEOREM: Diagonals in a regular polygon.
(a) In the regular octagon opposite, use the circumcircle to prove that the six angles between adjacent diagonals at P are all equal. Hence find the value of $\alpha=\angle A P B$.
(b) More generally, prove that the angles between adjacent diagonals at any vertex of an n-sided regular polygon are all equal, and have the value $\frac{180^{\circ}}{n}$.

11. (a) Prove that a cyclic parallelogram is a rectangle.
(b) Prove that a cyclic rhombus is a square.
(c) Prove that the non-parallel opposite sides of a cyclic trapezium are equal.
12. Let A, B, C, D, and E be five points in order around a circle with centre O, and let $A O E$ be a diameter. Prove that $\angle A B C+\angle C D E=270^{\circ}$.
13. (a) Prove that if two chords of a circle bisect each other, then they are both diameters.
(b) Prove that if the chords $A B$ and $P Q$ intersect at M and $M A=M P$, then $M B=M Q$, $B P=A Q$ and $A P \| Q B$.
14. The orthocentre theorem: The three altitudes of a triangle are concurrent (their intersection is called the orthocentre of the triangle).
In the diagram opposite, the two altitudes $A P$ and $B Q$ meet at O. Join $C O$ and produce it to R, and join $P Q$.
(a) Explain why $O P C Q$ and $A Q P B$ are cyclic.

(b) Let $\angle A C R=\theta$, and explain why $\angle A P Q=\angle A B Q=\theta$.
(c) Use $\triangle O Q C$ and $\triangle O R B$ to prove that $C R \perp A B$.
15. The sine rule and the circumcircle: The ratio of any side of a triangle to the sine of the opposite angle is the diameter of the circumcircle.
Let $\angle A$ in $\triangle A B C$ be acute, and let O be the centre of the circumcircle of $\triangle A B C$. Join $B O$ and produce it to a diameter $B O P$, then join $P C$.
(a) Let $\angle A=\alpha$, and explain why $\angle P=\alpha$.
(b) Explain why $\triangle B P C$ is a right triangle.
(c) Hence prove that $\frac{B C}{\sin \alpha}=B O P$.
(d) Repeat the construction and proof when $\angle A$ is obtuse.

\qquad
\qquad
16. Maximisation: In the diagram below, $K L$ is a fixed chord of length a, and the point P varies on the major arc $K L$. Let y be the sum of the lengths of $P K$ and $P L$.
(a) Explain why α is constant as P varies.
(b) Use the sine rule to prove that $y=\frac{a}{\sin \alpha}(\sin \theta+\sin (\theta+\alpha))$.
(c) Find $\frac{d y}{d \theta}$, and show that $\frac{d^{2} y}{d \theta^{2}}=-y$.
(d) Prove that y is maximum when $\theta=\frac{1}{2}(\pi-\alpha)$, then find and simplify the maximum value.
17. Mathematical Induction: The alternating sums of the angles of a cyclic polygon.
(a) Prove that if $A B C D$ is a cyclic quadrilateral, then $\angle A-\angle B+\angle C-\angle D=0$.
(b) Prove that if $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ is a cyclic hexagon, then $\sum_{k=1}^{6}(-1)^{k} \angle A_{k}=0$.
[Hint: Use the major diagonal $A_{1} A_{4}$ to divide the hexagon into two cyclic quadrilaterals, then apply part (a) to each quadrilateral.]
(c) Use mathematical induction, and the same method as in part (b), to prove that for any cyclic polygon $A_{1} A_{2} \ldots A_{2 n}$ with an even number of vertices, $\sum_{k=1}^{2 n}(-1)^{k} \angle A_{k}=0$.
18. The orthocentre theorem: A proof using the circumcircle. In the diagram, the two altitudes $A P$ and $B Q$ meet at O. Join $C O$ and produce it to R. Produce $A P$ to meet the circumcircle of $\triangle A B C$ at X, and join $B X$ and $C X$. Let $\angle C B X=\phi$ and $\angle B C X=\psi$.
(a) Explain why $\angle C A X=\phi$.
(b) Using $\triangle Q O A$ and $\triangle P O B$, prove that $\angle P B O=\phi$.

(c) Prove that $\triangle P O B \equiv \triangle P X B$, and hence that $P O=P X$.
(d) Prove that $\triangle P O C \equiv \triangle P X C$, and hence that $\angle O C P=\psi$.
(e) By comparing $\triangle P O C$ and $\triangle R O A$, prove that $C R \perp A B$.
19. The last two questions of Exercise 4J in the Year 11 volume contain a variety of algebraic results about cyclic quadrilaterals and their circumcircles, established using trigonometry. Those results and their proofs could be examined in the present context of Euclidean geometry. See also the related questions about the circumcircle and incircle of a triangle at the end of Exercises 4 H and 4 I in the Year 11 volume.
20. The Euler line theorem: The orthocentre, centroid and circumcentre of a triangle are collinear (the line is called the Euler line), with the centroid trisecting the interval joining the other two centres.
Let M and G be the circumcentre and centroid respectively of $\triangle A B C$. Join $M G$, and produce it to a point O so that $O G: G M=2: 1$. We must prove that O is the orthocentre of $\triangle A B C$.
(a) Let P be the midpoint of $B C$. Use the fact that $A G: G P=2: 1$ to prove that $\triangle G M P \| \mid \triangle G A O$.
(b) Hence prove that O lies on the altitude from A.

(c) Complete the proof.

9 D Concyclic Points

A set of points is called concyclic if they all lie on a circle. The converses of the two theorems of the previous section provide two general tests for four points to be concyclic. There is an important logical structure here to keep in mind. First, any two distinct points lie on a unique line, but three points may or may not be collinear. Secondly, any three non-collinear points are concyclic, as proven in Section 9A, but four points may or may not be concyclic.

Concyclicity Test — Two Points on the Same Side of an Interval: We have proven that angles at the circumference standing on the same arc of a circle are equal. The converse of this is:

COURSE THEOREM: If two points lie on the same side of an interval, and the angles 15 subtended at these points by the interval are equal, then the two points and the endpoints of the interval are concyclic.

The most satisfactory proof makes use of the forward theorem.
Given: Let P and Q be points on the same side of an interval $A B$ such that $\angle A P B=\angle A Q B=\alpha$.

Aim: To prove that the points A, B, P and Q are concyclic.
Construction: Construct the circle through A, B and P, and let the circle meet $A Q$ (produced if necessary) at X. Join $X B$.

Proof: Using the forward theorem, $\angle A X B=\angle A P B=\alpha \quad$ (angles on the same arc $A B$).
Hence $\angle A X B=\angle A Q B$,
so $\quad Q B \| X B \quad$ (corresponding angles are equal).
But $Q B$ and $X B$ intersect at B, and are therefore the same line. Hence Q and X coincide, and so Q lies on the circle.

Worked Exercise: In the diagram opposite, $A B=A G$.
Prove that $A C G D$ is cyclic, and that $\angle A C D=\angle A G D$.

Hence $\quad \angle A C D=\angle A G D \quad$ (angles on the same arc $A D)$.

Concyclicity Test - Cyclic Quadrilaterals: The converses of the two forms of the cyclic quadrilateral theorem are:

Course theorem:

- If one pair of opposite angles of a quadrilateral is supplementary, then the quadrilateral is cyclic.
- If one exterior angle of a quadrilateral is equal to the opposite interior angle, then the quadrilateral is cyclic.

Since the exterior angle and the adjacent interior angle are supplementary, being angles in a straight angle, we need only prove the first test, and the second will follow immediately. The proof of the first test is similar to the previous proof, and is left to the exercises.

Worked Exercise: Give reasons why each quadrilateral below is cyclic.

(a)

$A B C D$ is a cyclic quadrilateral (opposite angles are supplementary).
(b)

$P Q R S$ is a cyclic quadrilateral (exterior angle equals opposite interior angle).

Note: When the angles subtended by the interval are right angles, the four points are concyclic by the earlier theorem that a right angle was an angle in a semicircle, moreover the interval is then a diameter of the circle. These two tests for the concyclicity of four points should therefore be seen as generalisations of that theorem.

Worked Exercise: Prove that if $F G C B$ is cyclic, then $F B=G C$. Prove that if $F B=G C$, then $F G C B$ is cyclic.

Solution: Let $\angle A F G=\alpha$.
Then $\angle A G F=\alpha \quad$ (base angles of isosceles $\triangle A F G$).
Suppose first that $F G C B$ is cyclic.
Then $\quad \angle C=\alpha$ (exterior angle of cyclic quadrilateral $F G C B$)
and $\quad \angle B=\alpha$ (exterior angle of cyclic quadrilateral $F G C B$),
so $\quad A B=A C \quad$ (opposite angles of $\triangle A B C$ are equal),
hence $\quad F B=G C \quad$ (subtracting the equal intervals $A F$ and $A G$).
Suppose secondly that $F B=G C$.
Then $\quad F G \| B C$ (intercepts on $A B$ and $A C$),
so $\quad \angle B=\alpha \quad$ (corresponding angles, $F G \| B C$),
hence $F G C B$ is cyclic (exterior angle $\angle A G F$ equals interior opposite angle $\angle B$).

Exercise 9D

Note: In each question, all reasons must always be given. Unless otherwise indicated, points labelled O are centres of the appropriate circles.

1. In each diagram, give a reason why $A B C D$ is a cyclic quadrilateral.
(a)

(b)

(c)

(d)

2. In each diagram, prove that the four darkened points are concyclic.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

3. (a)

Prove that $B E D C$ is cyclic.
Hence prove that $\angle E B D=\angle E C D$, and that $\angle A D E=\angle A B C$.
(b)

Prove that $\angle B M D=2 \theta$, and hence prove that $B M O D$ is cyclic.
Hence prove that $\angle M B O=\angle M D O$.
4. (a) Prove that every rectangle is cyclic.
(b) Prove that any quadrilateral $A B C D$ in which $\angle A-\angle B+\angle C-\angle D=0^{\circ}$ is cyclic.
\qquad development \qquad
5. COURSE THEOREM: If one pair of opposite angles of a quadrilateral is supplementary, then the quadrilateral is cyclic.
Let $A B C D$ be a quadrilateral in which $\angle A+\angle B C D=180^{\circ}$.
Construct the circle through A, B and D, and let it meet $B C$ (produced if necessary) at X. Join $D X$.
(a) Prove that $\angle B X D+\angle A=180^{\circ}$.
(b) Prove that $C D \| X D$, and that C and X coincide.
6. (a)

(i) Prove that if $A B M C$ is cyclic, then $M C \perp A C$.
(ii) Prove that if $M C \perp A C$, then $A B M C$ is cyclic.
(b)

(i) Prove that if $\angle B H F=\angle A G F$, then $F G A H$ is cyclic and $\angle A H G=\angle A F G$.
(ii) Prove that if $\angle A H G=\angle A F G$, then $F G A H$ is cyclic and $\angle B H F=\angle A G F$.
7. (a)

In the diagram above, $A B C D$ and $P Q R S$ are straight lines, not necessarily parallel.
(i) Show that $A P \| C R$.
(ii) Show that $A P S D$ is cyclic.
(b)

(i) Prove that $\angle P A B=\theta$.
(ii) Prove that if S, B, Q and M are concyclic, then R, A, and P are collinear.
(iii) Prove that if R, A and P are collinear, then $S B Q M$ is cyclic.
8. Let $A B$ and $X Y$ be parallel intervals, with $A Y$ and $B X$ meeting at M.
(a) Prove that if $A X Y B$ is cyclic, then $M A=M B$.
(b) Prove that if $M A=M B$, then $A X Y B$ is cyclic.
9. Let P, Q and R be the midpoints of three chords $M A, M B$ and $M C$ of a circle.
(a) Prove that $P Q \| A B$ and $Q R \| B C$. (b) Prove that M, P, Q and R are concyclic.
10. (a)

In the diagram above, $A B=A C$.
(i) Prove that $\angle C P Q=\theta$.
(ii) Prove that $\angle C P A=\phi$.
(iii) Hence prove that $P Q Y X$ is cyclic.
(b)

(i) Prove that if $A P$ produced is a diameter of circle $A B C$, then $\angle B A N=\angle C A P$.
(ii) Prove that if $\angle B A N=\angle C A P$, then $A P$ produced is a diameter of circle $A B C$.
11. The chord $A B$ of the circle opposite is fixed, and the point P varies on the major arc of the circle. The altitudes $A X$ and $B Y$ of $\triangle A B P$ meet at M.
(a) Let $\angle P=\alpha$. Explain why α is constant.
(b) Explain why $P X M Y$ is cyclic.
(c) Show that $\angle A M B=180^{\circ}-\alpha$, and find the locus of M.

12. Trigonometry: The spurious $A S S$ congruence test can be related to cyclic quadrilaterals.
The unbroken lines represent a construction of the two possible triangles $A B X$ and $A B X^{\prime}$ in which $\angle B A X=40^{\circ}$, $A B=10$ and $B X=7$. The broken lines represent $\triangle A B X^{\prime}$ reflected about $A B$ to $\triangle A B Y$. Prove that the two triangles
 together form a cyclic quadrilateral $A X B Y$.
13. A trigonometric theorem: $\tan \left(B+\frac{1}{2} A\right)=\frac{c+b}{c-b} \tan \frac{1}{2} A$ in any triangle $A B C$.

Let $A B C$ be a triangle in which $c>b$. Let $\angle A B C=\beta$ and $\angle C A B=\alpha$. Construct the circle with centre A passing through B, and construct the diameter $F A C G$. Let the perpendicular to $F A C G$ through C meet $B G$ at M.
(a) Explain why $A F=c$ and $C G=c-b$.
(b) Prove that C, M, B and F are concyclic.
(c) Prove that $\angle B F C=\frac{1}{2} \alpha=\angle C M G$.
(d) Prove that $\angle F B C=\beta+\frac{1}{2} \alpha=\angle F M C$.
(e) Prove that $C M=(c-b) \cot \frac{1}{2} \alpha=(c+b) \cot \left(\beta+\frac{1}{2} \alpha\right)$.
(f) Adapt the construction to prove the theorem when $c<b$.
14. $A B C$ and $A D E$ are any two intervals meeting at A. Let $B E$ and $D C$ meet at M, and let the circles $C M B$ and $E M D$ meet again at N. Prove that $A D N C$ and $A B N E$ are cyclic. [Hint: Join $N M, N C$ and $N E$.]

15. Referring to the diagram in question 11, where the chord $A B$ is constant and P varies:
(a) Explain why $A Y X B$ is cyclic, and locate the centre of this circle.
(b) Prove that $\angle Y A X$ is constant, and that the interval $X Y$ has constant length.
(c) What is the locus of the midpoint of $X Y$?
16. The nine-point circle theorem: The circle through the feet of the three altitudes of a triangle passes through the three midpoints of the sides, and bisects the three intervals joining the orthocentre to the vertices. Its centre is the midpoint of the interval joining the circumcentre and the orthocentre.
In $\triangle A B C$ opposite, P, Q and R are the feet of the three altitudes. The circle $P Q R$ meets the sides at L, M and N, and the intervals joining the orthocentre to the vertices at F, G and H. Let $\angle A B O=\alpha, \angle B A O=\beta$ and $\angle C A O=\gamma$.
(a) Prove that $\angle R B O=\angle R P O=\angle Q P O=\angle Q C O=\alpha$.
(b) Proceed similarly with β and γ.
(c) Prove that $\alpha+\beta+\gamma=180^{\circ}$.

(d) Prove that $\angle R L Q=2 \alpha$, and hence that $B L=L C$.
(e) Prove that $\angle L H C=\angle R P L$, and hence that $O H=H C$.
17. Let $A B C D$ be a square, and let P be a point such that $A P: B P: C P=1: 2: 3$.
(a) Find the size of $\angle A P B$.
(b) Give a straight-edge-and-compasses construction of the point P.

9 E Tangents and Radii

Tangents were the object of intensive study in calculus, because the derivative was defined as the gradient of the tangent. Circles, however, were their original context, and the results in the remainder of this chapter are developed without reference to the derivative.

Tangent and Radius: We shall assume that given a circle, any line is a secant crossing a circle at two points, or is a tangent touching it at one point, or misses the circle entirely.

17
Definition: A tangent is a line that meets a circle in one point, called the point of contact.

We shall also make the following assumption about the relationship between a tangent and the radius at the point of contact.

COURSE ASSUMPTION: At every point on a circle, there is one and only one tan18 gent to the circle at that point. This tangent is the line through the point perpendicular to the radius at the point.

This result can easily be seen informally in two ways. First, a diameter is an axis of symmetry of a circle - this symmetry reflects the perpendicular line at the endpoint T onto itself, and so the perpendicular line cannot meet the circle again, and is therefore a tangent.

Alternatively, if a line ever comes closer than the radius to the centre, then it will cross the circle twice and be a secant, so a tangent at a point T on a circle must be a line whose point of closest approach to the centre is T - but the closest distance to the centre is the perpendicular distance, therefore the tangent is the line perpendicular to the radius.

Worked Exercise: Find α in the diagram below, where O is the centre, and prove that $P A$ is a tangent to the circle.

```
Solution: }OA=OB (radii)
so }\quad\angleOAB=\angleOBA=6\mp@subsup{0}{}{\circ}\quad\mathrm{ (angle sum of isosceles }\triangleOAB\mathrm{ ),
so \quadBA=OB=PB (\triangleOBA is equilateral).
Hence }\quad\alpha=\angleP=3\mp@subsup{0}{}{\circ}\quad\mathrm{ (exterior angle of isosceles }\triangleBAP\mathrm{ ),
so }\angleOAP=9\mp@subsup{0}{}{\circ}\quad\mathrm{ (adjacent angles).
Hence \(P A\) is a tangent to the circle.
```

Tangents from an External Point: The first formal theorem about tangents concerns the two tangents to a circle from a point outside the circle.

19 Course theorem: The two tangents from an external point have equal lengths.
Given: Let $P S$ and $P T$ be two tangents to a circle with centre O from an external point P.

AIM: To prove that $P S=P T$.
Construction: Join $O P, O S$ and $O T$.
Proof: In the triangles $S O P$ and $T O P$:

1. $O S=O T \quad$ (radii),
2. $O P=O P \quad$ (common),
3. $\angle O S P=\angle O T P=90^{\circ} \quad$ (radius and tangent),

so $\quad \triangle S O P \equiv \triangle T O P \quad$ (RHS).
Hence $\quad P S=P T \quad$ (matching sides of congruent triangles).

Worked Exercise: Use the construction established above to prove:
(a) The tangents from an external point subtend equal angles at the centre.
(b) The interval joining the centre and the external point bisects the angle between the tangents.

Proof: Using the congruence $\triangle S O P \equiv \triangle T O P$ established above:
(a) $\angle S O P=\angle T O P$ (matching angles of congruent triangles),
(b) $\angle S P O=\angle T P O \quad$ (matching angles of congruent triangles).

Touching Circles: Two circles are said to touch if they have a common tangent at the point of contact. They can touch externally or internally, as the two diagrams below illustrate.

Course theorem: When two circles touch (inter-
20 nally or externally), the two centres and the point of contact are collinear.

Given: Let two circles with centres O and Z touch at T.
Aim: To prove that O, T and Z are collinear.
Construction: Join $O T$ and $Z T$,
and construct the common tangent $X T Y$ at T.

Proof: There are two possible cases, because the circles can touch internally or externally, but the argument is practically the same in both. Since $X Y$ is a tangent and $O T$ and $Z T$ are radii,

$$
\angle O T X=90^{\circ} \text { and } \angle Z T X=90^{\circ} .
$$

Hence $\angle O T Z=180^{\circ} \quad$ (when the circles touch externally), or $\angle O T Z=0^{\circ}$ (when the circles touch internally).
 In both cases, O, T and Z are collinear.

Direct and Indirect Common Tangents: There are two types of common tangents to a given pair of circles:

DIRECT AND INDIRECT COMMON TANGENTS: A common tangent to a pair of circles:
21 - is called direct, if both circles are on the same side of the tangent,

- is called indirect, if the circles are on opposite sides of the tangent.

The two types are illustrated in the worked exercise below. Notice that according to this definition, the common tangent at the point of contact of two touching circles is a type of indirect common tangent if they touch externally, and a type of direct common tangent if they touch internally.

Worked Exercise: Given two unequal circles and a pair of direct or indirect common tangents (notice that there are two cases):
(a) Prove that the two tangents have equal lengths.
(b) Prove that the four points of contact form a trapezium.
(c) Prove that their point of intersection is collinear with the two centres.

Given: Let the two circles have centres O and Z.

Let the tangents $R T$ and $U S$ meet at M.

Construction: Join $O M$ and $Z M$.
Aim: To prove:
(a) $R T=S U$, (b) $R S \| U T$,
(c) $O M Z$ is a straight line.

Proof:

(a) $\quad R M=S M \quad$ (tangents from an external point), and $T M=U M \quad$ (tangents from an external point),
so $\quad R T=R M-M T=S M-M U=S U \quad$ (direct case),
or $\quad R T=R M+M T=S M+M U=S U \quad$ (indirect case).
(b) Let $\quad \alpha=\angle S R M$.

Then $\angle R S M=\alpha \quad$ (base angles of isosceles $\triangle R M S$),
so $\quad \angle R M S=180^{\circ}-2 \alpha \quad$ (angle sum of $\triangle R M S$),
so $\quad \angle T M U=180^{\circ}-2 \alpha \quad$ (vertically opposite, or common, angle),
so $\quad \angle U T M=\alpha \quad$ (base angles of isosceles $\triangle T M U$).
Hence $\quad R S \| T U \quad$ (alternate or corresponding angles are equal).
(c) From the previous worked exercise, both $O M$ and $Z M$ bisect the angle between the two tangents, and hence

$$
\angle R M O=\angle T M Z=90^{\circ}-\alpha .
$$

In the direct case, $O M$ and $Z M$ must be the same arm of the angle with vertex M. In the indirect case, $O M Z$ is a straight line by the converse of the vertically opposite angles result.

Exercise 9E

Note: In each question, all reasons must always be given. Unless otherwise indicated, points labelled O or Z are centres of the appropriate circles, and the obvious lines at points labelled R, S, T and U are tangents.

1. Find α and β in each diagram below.
(a)

(b)

(c)

(e)

(f)

(g)

2. Find x in each diagram.
(a)

(b)

(c)

(f)

(d)

(h)

3. Find α, β and γ in each diagram below.
(a)
(b)

(c)
(d)

4. (a)

Prove that the tangents at S and at T are parallel.
(c)

Prove that $A B+D C=A D+B C$.
(b)

Prove that the three tangents $P R, P S$ and $P T$ from the point P on the common tangent at the point S of contact are equal.
(d)

Prove that $O S P T$ is cyclic, and hence that $\angle O S T=\angle O P T$ and $\angle T O P=\angle T S P$.
5. Construction: Construct the tangents to a given circle from a given external point.
Given a circle with centre O and an external point P, construct the circle with diameter $O P$, and let the two circles intersect at A and B. Prove that $P A$ and $P B$ are tangents.

6. (a)

Prove: (i) the indirect common tangents $A D$ and $B C$ are equal, (ii) $A B \| C D$.
(c)

Prove that $P T \| R Q$.
(b)

Prove: (i) the direct common tangents $A C$ and $B D$ are equal, (ii) $A B \| C D$.
(d)

Prove that the common tangent $M R$ at the point of contact bisects the direct common tangent $S T$, and that $S R \perp T R$.
7. In each diagram, both circles have centre O and the inner circle has radius r. Find the radius of the outer circle if:
(a) $A B C D$ is a square,
(b) $A B C$ is an equilateral triangle.

DEVELOPMENT \qquad
8. (a) Theorem: The line joining the centre of a circle to an external point is the perpendicular bisector of the chord joining the points of contact.
It was proven that $\angle T O M=\angle S O M$ in a worked exercise. Using this, prove by congruence that $T S \perp O P$.

(b) Theorem: In the same notation, the semichord $T M$ is the geometric mean of the intercepts $P M$ and $O M$.
(i) Prove that $\triangle M P T\|\| \triangle M O$.
(ii) Hence prove that $T M^{2}=P M \times O M$.
(c) Given that $O M=7$ and $M P=28$, find $S T$.
9. (a) Show that an equilateral triangle of side length $2 r$ has altitude of length $r \sqrt{3}$.
(b) Hence find the height of the pile of three circles of equal radius r drawn to the right.

10. In each diagram, use Pythagoras' theorem to form an equation in x, and then solve it. [Hint: In part (c), drop a perpendicular from P to $Q T$.]
(a)

(b)
(c)

(d)

11. In each diagram below, prove: (i) $\triangle P A T \| \triangle Q B T$, (ii) $A P \| Q B$.
(a)

(b)

12. (a)

Prove that $B A=A S$.
[Hint: Join $T O$ and $T S$, then let $\angle R=\theta$.]
(b)

Given that $P T=P M$, prove that $P O$ is perpendicular to $S O$.
[Hint: Let $\angle T M P=\theta$.]
13. Construction: Construct the circle with a given point as centre and tangential to a given line not passing though the point. Use the fact that a tangent is perpendicular to the radius at the point of contact to find a ruler-and-compasses construction of the circle.
14. (a)

Suppose that the circle $R S T$ is inscribed in $\triangle A B C$. Prove that $k=\frac{1}{2}(-a+b+c)$, $\ell=\frac{1}{2}(a-b+c)$ and $m=\frac{1}{2}(a+b-c)$.
(b)

Suppose further that $\angle A B C=90^{\circ}$. Prove that $k=\frac{\ell(m+\ell)}{m-\ell}$, and find a, b and c in terms of ℓ and m.
15. Theorem: Suppose that two circles touch externally, and fit inside a larger circle which they touch internally. Then the triangle formed by the three centres has perimeter equal to the diameter of the larger circle. Prove this theorem using a suitable diagram.
16. (a) Two circles with centres O and Z intersect at A and B so that the diameters $A O F$ and $A Z G$ are each tangent to the other circle.
(i) Prove that F, B and G are collinear.
(ii) Prove that $\triangle A G B\|\| F A B$, and hence prove that $A B$ is the geometric mean of $F B$ and $G B$ (meaning
 that $\left.A B^{2}=F B \times G B\right)$.
(b) Conversely, suppose that $A B$ is the altitude to the hypotenuse of the right triangle $A F G$. Prove that the circles with diameters $A F$ and $A G$ intersect again at B, and are tangent to $A G$ and $A F$ respectively.

17. (a) Two circles of radii 5 cm and 3 cm touch externally. Find the length of the direct common tangent.
(b) Two circles of radii 17 cm and 10 cm intersect, with a common chord of length 16 cm . Find the length of the direct common tangent.
(c) Two circles of radii 5 cm and 4 cm are 3 cm apart at their closest point. Find the lengths of the direct and indirect common tangents.
18. Prove the following general cases of the previous question.
(a) THEOREM: The direct common tangent of two circles touching externally is the geometric mean of their diameters (meaning that the square of the tangent is the product of the diameters).
(b) Theorem: The difference of the squares of the direct and indirect common tangents of two non-overlapping circles is the product of the two diameters.
19. The incentre theorem: The angle bisectors of the vertices of a triangle are concurrent, and their point of intersection (called the incentre) is the centre of a circle (called the incircle) tangent to all three sides. In the diagram opposite, the angle bisectors of $\angle A$ and $\angle B$ of $\triangle A B C$ meet at I. The intervals $I L, I M$ and $I N$ are perpendiculars to the sides.
(a) Prove that $\triangle A I N \equiv \triangle A I M$ and $\triangle B I L \equiv \triangle B I N$.

(b) Prove that $I L=I M=I N$.
(c) Prove that $\triangle C I L \equiv \triangle C I M$.
(d) Complete the proof.
20. (a)

Trigonometry: The figure $A T B$ in the diagram above is a semicircle. Find the exact values of the lengths $T P$ and $B P$.
(b)

Mensuration: This window is made in four pieces. Find the area of the small piece $A S T$ exactly and approximately.
\qquad
21. (a) Theorem: If two circles touch, the tangents to the two circles from a point outside both of them are equal if and only if the point lies on the common tangent at the point of contact.
In the diagram to the right, use Pythagoras' theorem to prove that $P R=P S$ if and only if $x=0$.
(b) Theorem: Given three circles such that each pair of circles touches externally, the common tangents at the
 three points of contacts are equal and concurrent. They meet at the incentre of the triangle formed by the three centres, and the incircle passes through the three points of contact. Use the result of part (a) to prove this theorem.
22. (a) Three circles of equal radius r are placed so that each is tangent to the other two. Find the area of the region contained between them, and the radius of the largest circle that can be constructed in this region.
(b) Four spheres of equal radius r are placed in a stack so that each touches the other three. Find the height of the stack.
23. (a) Construction: Given two intersecting lines, construct the four circles of a given radius that are tangential to both lines.
(b) Construction: Given two non-intersecting circles, construct their direct and indirect common tangents.
24. (a) Theorem: Suppose that there are three circles of three different radii such that no circle lies within any other circle. Prove that the three points of intersection of the direct common tangents to each pair of circles are collinear. [Hint: Replace the three circles by three spheres lying on a table, then the direct common tangents to each pair of circles form a cone.]
(b) Theorem: Prove that the orthocentre of a triangle is the incentre of the triangle formed by the feet of the three altitudes.

9 F The Alternate Segment Theorem

The word 'alternate' means 'the other one'. In the diagram below, the chord $A B$ divides the circle into two segments - the angle $\alpha=\angle B A T$ lies in one of the segments, and the angle $A P B$ lies in the other segment. The alternate segment theorem claims that the two angles are equal.

The Alternate Segment Theorem: Stating the theorem verbally: point of contact is equal to any angle in the alternate segment.

Given: Let $A B$ be a chord of a circle with centre O, and let $S A T$ be the tangent at A. Let $\angle A P B$ be an angle in the alternate (other) segment to $\angle B A T$.

Aim: To prove that $\angle A P B=\angle B A T$.
Construction: Construct the diameter $A O Q$ from A, and join $B Q$.

Proof: Let $\angle B A T=\alpha$.
Since $\quad \angle Q A T=90^{\circ} \quad$ (radius and tangent),
$\angle B A Q=90^{\circ}-\alpha$.
Again, since $\angle Q B A=90^{\circ} \quad$ (angle in a semicircle),
$\angle Q=\alpha$.
Hence
$\angle P=\angle Q=\alpha \quad($ angles on the same $\operatorname{arc} B A)$.

Worked Exercise: In the diagram below, $A S$ and $A T$ are tangents to a circle with centre O, and $\angle A=\angle P=\alpha$.
(a) Find α. (b) Prove that T, A, S and O are concyclic.

Solution:

(a) First, $\angle A S T=\alpha$ (alternate segment theorem). Secondly, $\angle A T S=\alpha \quad$ (alternate segment theorem). Hence $\triangle A T S$ is equilateral, and $\alpha=60^{\circ}$.
(b) $\angle S O T=120^{\circ} \quad$ (angles on the same arc $S T$), so $\angle A$ and $\angle S O T$ are supplementary. Hence $T A S O$ is a cyclic quadrilateral.

Worked Exercise: In the diagram below, $A T$ and $B T$ are tangents.
(a) Prove that $\triangle A T S\|\| T B S$.
(b) Prove that $A S \times B S=S T^{2}$.
(c) If the points A, S and B are collinear, prove that $T A$ and $T B$ are diameters.

Solution:

(a) In the triangles $A T S$ and $T B S$:

1. $\angle A T S=\angle T B S \quad$ (alternate segment theorem),
2. $\angle T A S=\angle B T S$ (alternate segment theorem), so $\quad \triangle A T S||\mid \triangle T B S$ (AA).
(b) Using matching sides of similar triangles, $\frac{A S}{S T}=\frac{S T}{B S}$

$$
A S \times B S=S T^{2}
$$

(c) First, $\angle T S A=\angle T S B$ (matching angles of similar triangles).

Secondly, $\angle T S A$ and $\angle T S B$ are supplementary (angles on a straight line).
Hence $\angle T S A=\angle T S B=90^{\circ}$.
Since $T A$ and $T B$ subtend right angles at the circumference, they are diameters.

Exercise 9F

Note: In each question, all reasons must always be given. Unless otherwise indicated, points labelled O or Z are centres of the appropriate circles, and the obvious lines at points labelled R, S, T and U are tangents.

1. State the alternate segment theorem, and draw several diagrams, with tangents and chords in different orientations, to illustrate it.
2. Find α, β, γ and δ in each diagram below.
(a)

(b)

(c)

(d)

(h)

(1)

(f)

(i)

(g)

(k)

3. In each diagram below, express α, β and γ in terms of θ.
(a)

(b)

(c)

(d)

4. In each diagram below, $P T Q$ is a tangent to the circle.
(a)

(b)
Prove that $B T=B A$.

Prove that
$T A=T B$.
(c)

Prove that
$A B \| P T Q$.
(d)

Prove that $B T$ bisects $\angle A T Q$.
5. (a)

The line $S B$ is a tangent, and $A S=A T$. Find α and β.
(b)

The tangents at S and T meet at the centre O. Find α, β and γ.
6. Another proof of the alternate segment theorem: Let $A B$ be a chord of a circle, and let $S A T$ be the tangent at A. Let $\angle A P B$ be an angle in the alternate segment to $\angle B A T$.
(a) Let $\alpha=\angle B A T$, and find $\angle O A B$.
(b) Find $\angle O B A$ and $\angle A O B$. (c) Hence show that $\angle P=\alpha$.

7. (a)

The two circles touch externally at T, and $X T Y$ is the common tangent at T. Prove that $A B \| Q P$.
8. (a)

The lines $S A$ and $S B$ are tangents.
(i) Prove that $\angle S A T=\angle B S T$.
(ii) Prove that $\triangle S A T\|\| B S T$.
(iii) Prove that $A T \times B T=S T^{2}$.
9. (a)

The line $T C$ is a tangent. Prove that $T A \| C B$.
(b)

The two circles touch externally at T, and $X T Y$ is the common tangent there. Prove that the points Q, T and B are collinear.
(b)

The lines $S A$ and $T B$ are tangents.
(i) Prove that $A T \| S B$.
(ii) Prove that $\triangle S A T\|\| \triangle B T S$.
(iii) Prove that $A T \times B S=S T^{2}$.
(b)

The lines $S B$ and $P B Q$ are tangents.
Prove that $S A \| P B Q$.
10. (a)

The line $T G$ bisects $\angle B T A$, and $E T$ is a tangent. Prove that $E T=E G$.
(b)

The line $S T U$ is a tangent parallel to $P Q$. Prove that Q, B and T are collinear.
11. Investigate what happens in question 6, parts (a) and (b), when the two circles touch internally. Draw the appropriate diagrams and prove the corresponding results.
12. $S T$ is a direct common tangent to two circles touching externally at U, and $X U Y$ is the common tangent at U.
(a) Prove that $A T \perp B S$.
(b) Prove that $A S$ and $B T$ are parallel diameters.
(c) Explain why if the two circles have different diameters, then $A B$ is not a tangent to either circle.
(d) Prove that the circle through S, U and T has centre X
 and is tangent to $A S$ and $B T$.
13. RSTU is a direct common tangent to the two circles.
(a) Prove that $\angle R S A=\angle U T B$.
(b) Prove that $\triangle A S T\|\| S T B$.
(c) Prove that $S T^{2}=A S \times B T$.
(d) Prove that if the points A, G and B are collinear, then $\angle S F A=60^{\circ}$.

14. A locus problem: Two circles of equal radii intersect at A and B. A variable line through A meets the two circles again at P and Q.
(a) Prove that $\angle Q P B=\angle P Q B$.
(b) Prove that $B M \perp P Q$, where M is the midpoint of $P Q$.
(c) What is the locus of M, as the line $P A Q$ varies?

(d) What happens when Q lies on the minor $\operatorname{arc} A B$?
15. (a)

If $S T \| A B$ and $T M$ is a tangent, prove that $\triangle T M B\|\| \triangle T A S$.
(b)

If the circles are tangent at S, and $A T B$ is a tangent, prove that $T S$ bisects $\angle A S B$.
16. The converse of the alternate segment theorem: Suppose that the line SAT passes through the vertex A of $\triangle A B P$ and otherwise lies outside the triangle. Suppose also that $\angle B A T=\angle A P B=\alpha$. Then the circle through A, B and P is tangent to $S A T$. Construct the circle through A, B and P, and let $G A H$ be the tangent to the circle at A.
(a) Prove that $\angle B A H=\alpha$.
(b) Hence explain why the lines $S A T$ and $G A H$ coincide.
17. Theorem: Let equilateral triangles $A B R, B C P$ and $C A Q$ be built on the sides of an acute-angled triangle $A B C$. Then the three circumcircles of the equilateral triangles intersect in a common point, and this point is the point of intersection of the three concurrent lines $A P, B Q$ and $C R$. Construct the circles through A, C and Q and through A, B and R, and let the two circles meet again at M.
(a) Prove that $\angle A M C=\angle A M B=120^{\circ}$.
(b) Prove that P, C, M and B are concyclic.
(c) Prove that $\angle A M Q=60^{\circ}$.
(d) Hence prove the theorem.

18. The alternate segment theorem has an interesting relationship with the earlier theorem that two angles at the circumference subtended by the same arc are equal. Go back to that theorem (see Box 13), and ask what happens to the diagram as Q moves closer and closer to A. The alternate segment theorem describes what happens when Q is in the limiting position at A.
19. A maximisation theorem: A cyclic quadrilateral has the maximum area of all quadrilaterals with the same side lengths in the same order. Let the quadrilateral have fixed side lengths a, b, c and d, and variable opposite angles θ and ψ as shown. Let A be its area.
(a) Explain why $A=\frac{1}{2} a b \sin \theta+\frac{1}{2} c d \sin \psi$.
(b) By equating two expressions for the diagonal, and differentiating implicitly with respect to θ, prove that

$$
\frac{d \psi}{d \theta}=\frac{a b \sin \theta}{c d \sin \psi}
$$

(c) Hence prove that $\frac{d A}{d \theta}=\frac{a b \sin (\theta+\psi)}{2 \sin \psi}$, and thus prove the theorem.

9 G Similarity and Circles

The theorems of the previous sections have concerned the equality of angles at the circumference of a circle. In this final section, we shall use these equal angles to prove similarity. The similarity will then allow us to work with intersecting chords, and with secants and tangents from an external point.

Intercepts on Intersecting Chords: When two chords intersect, each is broken into two intervals called intercepts. The first theorem tells us that the product of the intercepts on one chord equals the product of the intercepts on the other chord.

COURSE THEOREM: If two chords of a circle intersect, the product of the intercepts on the one chord is equal to the product of the intercepts on the other chord.

Given: Let $A B$ and $P Q$ be chords of a circle intersecting at M.
AIM: To prove that $A M \times M B=P M \times M Q$.
Construction: Join $A P$ and $B Q$.
Proof: In the triangles $A P M$ and $Q B M$:

1. $\angle A=\angle Q \quad$ (angles on the same $\operatorname{arc} P B$),
2. $\angle A M P=\angle Q M B \quad$ (vertically opposite angles),
so $\quad \triangle A P M \| \triangle Q B M \quad$ (AA).

Hence $\quad \frac{A M}{Q M}=\frac{P M}{B M} \quad$ (matching sides of similar triangles),
that is, $A M \times M B=P M \times M Q$.
Intercepts on Secants: When two chords need to be produced outside the circle, before they intersect, the same theorem applies, provided that we reinterpret the theorem as a theorem about secants from an external point. The intercepts are now the two intervals on the secant from the external point.

Course theorem: Given a circle and two secants from an external point, the 24 product of the two intervals from the point to the circle on the one secant is equal to the product of these two intervals on the other secant.

Given: Let M be a point outside a circle, and let $M A B$ and $M P Q$ be secants to the circle.

AIM: To prove that $A M \times M B=P M \times M Q$.
Construction: Join $A P$ and $B Q$.
Proof: In the triangles $A P M$ and $Q B M$:

1. $\angle M A P=\angle M Q B \quad$ (external angle of cyclic quadrilateral),
2. $\angle A M P=\angle Q M B$ (common),
so $\quad \triangle A P M \| \triangle Q B M \quad$ (AA).
Hence $\quad \frac{A M}{Q M}=\frac{P M}{B M} \quad$ (matching sides of similar triangles),
that is, $A M \times M B=P M \times M Q$.
Intercepts on Secants and Tangents: A tangent from an external point can be regarded as a secant meeting the circle in two identical points. With this interpretation, the previous theorem still applies.

Course theorem: Given a circle, and a secant and a tangent from an external point, the product of the two intervals from the point to the circle on the secant is equal to the square of the tangent.
In other words, the tangent is the geometric mean of the intercepts on the secant.

Recall the definitions of arithmetic and geometric means of two numbers a and b :

- The arithmetic mean is the number m such that $b-m=m-a$.

That is, $2 m=a+b$ or $m=\frac{a+b}{2}$.

- The geometric mean is the number g such that $\frac{b}{g}=\frac{g}{a}$.

That is, $g^{2}=a b$, or (if g is positive) $g=\sqrt{a b}$.
Given: Let M be a point outside a circle. Let $M A B$ be a secant to the circle, and let $M T$ be a tangent to the circle.

AIm: To prove that $A M \times M B=T M^{2}$.
Construction: Join $A T$ and $B T$.
Proof: In the triangles $A T M$ and $T B M$:

1. $\angle A T M=\angle T B M$ (alternate segment theorem),
2. $\angle A M T=\angle T M B$ (common),
so
$\triangle A T M \| \mid \triangle T B M \quad(\mathrm{AA})$.

Hence $\frac{A M}{T M}=\frac{T M}{B M} \quad$ (matching sides of similar triangles), that is, $A M \times M B=T M^{2}$.

Worked Exercise: Find x in the two diagrams below.
(a)

(b)

Solution:

(a) $8(x+8)=6 \times 12$
(intercepts on intersecting chords)
(b) $\quad x(x+5)=6^{2} \quad$ (tangent and secant)

$$
x^{2}+5 x-36=0
$$

$$
\begin{aligned}
(x+9)(x-4) & =0 \\
x & =4 \quad(x \text { must be positive }) .
\end{aligned}
$$

$$
\begin{aligned}
x+8 & =9 \\
x & =1 .
\end{aligned}
$$

Exercise 9G

Note: In each question, all reasons must always be given. Unless otherwise indicated, points labelled O or Z are centres of the appropriate circles, and the obvious lines at points labelled R, S, T and U are tangents.

1. Find x in each diagram below.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

2. (a)

(i) Explain why $M B=x$.
(ii) Find x.
(iii) Find the area of $C A D B$.
(b)

(i) Explain why $C D \perp A B$.
(ii) Find the radius $O C$.
(iii) Find the area of $C A D B$.
\qquad
\qquad
3. Theorem: When two circles intersect, the common chord of the two circles bisects each direct common tangent.
In the diagram, $S T$ is a direct common tangent.
(a) Give a reason why $S K^{2}=K A \times K B$.
(b) Hence prove that $S K=T K$.

4. Converse of the intersecting chords Theorem: If the products of the intercepts on two intersecting intervals are equal, then the four endpoints of the two intervals are concyclic.
In the diagram opposite, $A M \times B M=C M \times D M$.
(a) Prove that $\frac{A M}{C M}=\frac{D M}{B M}$.

(b) Prove that $\triangle A M C\|\| D M B$.
(c) Prove that $\angle C A M=\angle B D M$.
(d) Prove that $A C B D$ is cyclic.
5. CONVERSE OF THE SECANTS FROM AN EXTERNAL POINT THEOREM: Let two intervals $A B M$ and $C D M$ meet at their common endpoint M, and suppose that

$$
A M \times B M=C M \times D M
$$

Then $A B D C$ is cyclic.
(a) Prove that $\triangle A M C \| \triangle D M B$.

(b) Prove that $\angle C A M=\angle B D M$.
(c) Prove that $A C B D$ is cyclic.
6. The arithmetic and geometric means:
(a) Give a reason why $M Q=x$.
(b) Prove that x is the geometric mean of a and b, that is, $x=\sqrt{a b}$.
(c) Prove that the radius of the circle is the arithmetic mean of a and b, that is, $r=\frac{1}{2}(a+b)$.

(d) Prove that, provided $a \neq b$, the arithmetic mean of a and b is greater than their geometric mean.
7. The altitude to the hypotenuse:

In the diagram opposite, $A T$ is a tangent.
(a) Show that $t^{2}=y(x+y)$.
(b) Show that $d^{2}+t^{2}-x^{2}-y^{2}=2 x y$.
(c) Show that $T M \perp B A$.
(d) Where does the circle with diameter $T A$ meet the first circle?
(e) Where does the circle with diameter $A B$ meet the first circle?

(f) Use part (d) to show that $d^{2}=x(x+y)$.
(g) Show that $\triangle A T M\|\|\triangle B M\| \mid \triangle A B T$.
(h) Show that $T M^{2}=x y$. (i) Show that $t x=d \times T M$.
8. A construction of the geometric mean: In the diagram to the right, $P T$ and $P S$ are tangents from an external point P to a circle with centre O.
(a) Prove that $\triangle O T M \| \triangle T P M$.
(b) Prove that $T M^{2}=O M \times P M$.
(c) Prove that $O M \times O P=O M \times M P+O M^{2}$.
(d) Show that $O F$ is the geometric mean of $O M$ and $O P$ (that is, prove that $O F^{2}=O M \times O P$).

9. (a)

Theorem: In the diagram, $P T P^{\prime}$ and $P S$ are tangents. Let $\angle T F^{\prime} M=\alpha$.
(i) Prove that $\angle F T P=\alpha$.
(ii) Prove that $F T$ bisects $\angle M T P$.
(iii) Prove that $F^{\prime} T$ bisects $\angle M T P^{\prime}$.
(b)

Converse theorem: In the diagram, $T S \perp F^{\prime} O F$, and $\angle F T M=\angle F T P=\alpha$.
(i) Prove that $\angle T F^{\prime} M=\alpha$.
(ii) Prove that $O T \perp T P$.
(iii) Prove that $T P$ is a tangent.
10. (a) Trigonometry with overlapping circles: Suppose that two circles \mathcal{C} and \mathcal{D} of radii r and s respectively overlap, with the common chord subtending angles of 2θ and 2ϕ at the respective centres of \mathcal{C} and \mathcal{D}. Show that the ratio $\sin \theta: \sin \phi$ is independent of the amount of overlap, being equal to $s: r$. What happens when 2θ is
 reflex?
(b) Trigonometry with touching circles: Suppose that two circles touch externally, and that their radii are r and s, with $r>s$. Let their direct common tangents meet at an angle 2θ. Show that

$$
\frac{r}{s}=\frac{1+\sin \theta}{1-\sin \theta}
$$

11. Theorem: Given three circles such that each pair of circles overlap, then the three common chords are concurrent.
In the diagram opposite, the common chords $A B$ and $C D$ meet at M, and the line $E M$ meets the two circles again at X and Y.
(a) By applying the intersecting chord theorem three times, prove that $E M \times M X=E M \times M Y$.
(b) Explain why $E M$ must be the third common chord.

(c) Repeat the construction and proof when the common chords $A B$ and $C D$ meet outside the two circles.
12. Theorem: Given three circles such that each pair of circles touch externally, then the three common tangents at the points of contact are concurrent.
Prove this theorem by making suitable adaptions to the previous proof.
13. Converse of the secant and tangent theorem:

Let the intervals $A B M$ and $C M$ meet at their common endpoint M, and suppose that $M C^{2}=M A \times M B$. Then $M C$ is tangent to the circle $A B C$.
Construct the circle $A B C$, and suppose by way of contradiction that it meets $M C$ again at X.
(a) Prove that $M A \times M B=M C \times M X$.
(b) Hence prove that C and X coincide.
14. Harmonic conjugates: In the configuration of question 9:
(a) Prove that M divides $F^{\prime} F$ internally in the same ratio that P divides $F^{\prime} F$ externally. (M is called the harmonic conjugate of P with respect to F^{\prime} and F).
(b) Prove that $F^{\prime} F$ is the harmonic mean of $F^{\prime} M$ and $F^{\prime} P$ (meaning that $\frac{1}{F^{\prime} F}$ is the arithmetic mean of $\frac{1}{F^{\prime} M}$ and $\frac{1}{F^{\prime} P}$).
15. The radical axis theorem:
(a) Suppose that two circles with centres O and Z and radii r and s do not overlap. Let the line $O Z$ meet the circles at A^{\prime}, A, B and B^{\prime} as shown, and let $A B=\ell$. Choose R on $A B$ so that the tangents $R S$ and $R T$ to the two circles have equal length t.
(i) Prove that a point H outside both circles lies on the perpendicular to $O Z$ through R if and only if the tangents from H to the two circles
 are equal.
(ii) Prove that $A R: R B=A B^{\prime}: A^{\prime} B$.
(b) Suppose that two circles with centres O and Z and radii r and s overlap, meeting at F and G. Let the line $O Z$ meet the circles at A^{\prime}, A, B and B^{\prime} as shown, with $A B=\ell$. Let $O Z$ meet $F G$ at R.
(i) Prove that if H is any point outside both circles, then H lies on $F G$ produced if and only if the tangents from H to the two circles are equal.
(ii) Prove that $A R: R B=A B^{\prime}: A^{\prime} B$.

16. Constructions to square a rectangle, a triangle and a polygon:
(a) Use the configuration in question 6 to construct a square whose area is equal to the area of a given rectangle.
(b) Construct a square whose area is equal to the area of a given triangle.
(c) Construct a square whose area is equal to the area of a given polygon.
17. Construction: Construct the circle(s) tangent to a given line and passing through two given points not both on the line.
18. Geometric sequences in geometry: In the diagram below, $A B C D$ is a rectangle with $A B: B C=1: r$. The line through B perpendicular to the diagonal $A C$ meets $A C$ at M and meets the side $A D$ at F. The line $D M$ meets the side $A B$ at G.
(a) Write down five other triangles similar to $\triangle A M F$.
(b) Show that the lengths $F A, A B$ and $B C$ form a GP.
(c) Find the ratio $A G: G B$ in terms of r, and find r if $A G$ and $G B$ have equal lengths.
(d) Is it possible to choose the ratio r so that $D G$ is a common tangent to the circles with diameters $A F$ and $B C$ respectively?
(e) Is it possible to choose the ratio r so that the points D,
 F, G and B are concyclic and distinct?
19. A difficult theorem: Prove that the tangents at opposite vertices of a cyclic quadrilateral intersect on the secant through the other two vertices if and only if the two products of opposite sides of the cyclic quadrilateral are equal.

CO Online Multiple Choice Quiz

