Equations et inéquations exponentielles :

Ex.1

- 1) Résoudre dans IR les équations suivantes :

 - a) $e^{2x} 3e^x 4 = 0$. b) $e^{-2x} + 3e^{-x} 4 = 0$.
 - c) $e^{x} 4e^{-x} + 3 = 0$.
- 2) Résoudre dans IR les inéquations suivantes :
 - a) $e^{2x} 2e^x 3 \le 0$.
 - b) $e^{2x} 3e^x + 2 > 0$.

Intégrales exponentielles :

Ex.2

Calculer les intégrales suivantes :

$$I) \int_{0}^{\ln 2} \frac{e^{x}}{1+e^{x}} dx$$

2)
$$\int_{0}^{-\ln 3} \frac{1+e^{x}}{e^{x}} dx$$

1)
$$\int_{0}^{\ln 2} \frac{e^{x}}{1+e^{x}} dx$$
 2) $\int_{0}^{-\ln 3} \frac{1+e^{x}}{e^{x}} dx$ 3) $\int_{0}^{\ln 2} (x+1)e^{2x} dx$

4)
$$\int_{0}^{\ln 3} \frac{x}{e^{x}} dx$$

4)
$$\int_{0}^{\ln 3} \frac{x}{e^{x}} dx$$
 5) $\int_{0}^{\ln 3} (x^{2} + 1)e^{x} dx$

(Dans la suite, le plan est rapporté à un repère orthonormé direct $(O; \vec{i}; \vec{j})$).

Problèmes

- 1. Soit f la fonction définie sur IR par $f(x) = (x-1)e^x + 1$ et (C) sa courbe représentative.
- 1) a- Calculer $\lim f(x)$ et déduire une asymptote (d) à (C).
 - b- Etudier, suivant les valeurs de x, la position relative de (C) et (d).
 - c- Calculer lim f(x) et donner f(2) sous forme décimale.
- 2) Calculer f'(x) et dresser le tableau de variations de f.
- 3) Montrer que la courbe (C) admet un point d'inflexion W dont on déterminera les coordonnées.
- *4) a- Tracer (d) et (C).*
 - b-Discuter graphiquement, suivant les valeurs du réel m, le nombre de solutions de l'équation $(m-1)e^{-x} = x-1$.
- 5) Calculer l'aire du domaine limité par (C), l'axe des abscisses et les deux droites d'équations x = 0 et x = 1.
- 6) a-Montrer que la fonction f admet sur $[0; +\infty]$ une fonction réciproque g et tracer la courbe représentative (G) de g dans le repère $(0; \vec{i}, \vec{j})$.
 - b- Trouver l'aire du domaine limité par (G), l'axe des ordonnées et la droite (d

- **2.** On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{e^x 1}{e^x + 1}$, et l'on désigne par (C) sa courbe représentative . (unité 2 cm).
- 1) Vérifier que f(x) + f(-x) = 0 et déterminer le centre de symétrie de f(x).
- 2) Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to -\infty} f(x)$ en déduire les asymptotes de (C).
- 3) Calculer f'(x) et dresser le tableau de variations de f.
- 4) Écrire une équation de la tangente (D) en O à (C).
- *5) Tracer (D) et (C).*
- 6) a- Calculer les réels a et b de sorte que, pour tout réel x, $f(x) = a + \frac{be^x}{1 + e^x}$.
 - b-Calculer l'aire S du domaine (δ) limité par (C), l'axe des abscisses et les droites d'équations x=0 et $x=\ln 3$.
 - c-Calculer le volume engendré par la rotation de (δ) autour de l'axe des abscisses.
- 7) On désigne par f $^{-1}$ la fonction réciproque de f dans \mathbb{R} .
 - a Déterminer le domaine de définition de f^{-1} et trouver $f^{-1}(x)$.
 - b Tracer la courbe (G) représentative de f⁻¹.
- 8) Soit F la fonction définie, pour tout x, par $F(x) = \int_0^x f(t)dt$

Etudier le sens de variations de F et le signe de F(x) suivant les valeurs de x.

3. A) La courbe (G) ci-dessous est la courbe représentative de la fonction g définie par $g(x) = 2e^{2x} - 5e^x + 2$. (La droite (d) est une asymptote à (G) à $-\infty$)

(d)

(G)

Calculer l'aire du domaine hachuré.

- **B)** Soit f la fonction définie sur $]0, +\square[$ par
- $f(x) = 2x 2 + \frac{1}{e^x 1}$ et (C) sa courbe représentative.
- 1) a-Déterminer $\lim_{x\to 0} f(x)$ et déduire une asymptote à (C).
 - b-Déterminer $\lim_{x\to 10} f(x)$ et montrer que la droite (d)

d'équation y = 2x - 2 est une asymptote à (C).

- c- Quelle est la position relative de (C) et (D) ?
- 2) a-Montrer que f'(x) = $\frac{g(x)}{(e^x 1)^2}$
 - b-Dresser le tableau de variations de f.
- *3) Tracer (D) et (C).*
- 4) Vérifier que $\frac{1}{e^x 1} = \frac{e^x}{e^x 1} 1$ et calculer l'aire du domaine limité par (C), la droite (d) et les deux droites d'équations $x = \ln 2$ et $x = \ln 3$.

- **4.** Soit f la fonction définie sur]1; $+\infty$ [par f (x) = $\ln\left(\frac{x+1}{x-1}\right)$.
- (C) est la courbe représentative de f dans un repère orthonormé $(0; \overrightarrow{i}, \overrightarrow{j})$.
- 1) Calculer $\lim_{x\to 1} f(x)$ et $\lim_{x\to +\infty} f(x)$. En déduire les asymptotes de (C).
- 2) Vérifier que $f'(x) = \frac{-2}{(x-1)(x+1)}$ et dresser le tableau de variations de f.
- *3) Tracer (C).*
- 4) a- Démontrer que f admet une fonction réciproque g dont on déterminera le domaine de définition.
 - b-Démontrer que $g(x) = \frac{e^x + 1}{e^x 1}$.
 - c- (G) est la courbe représentative de g dans le repère (0; i, j). Tracer (G).
- 5) Soit h la fonction définie sur]1; $+\infty$ [par h(x) = xf(x).
 - a- Vérifier que $f(x) = h'(x) + \frac{2x}{x^2 1}$ et déterminer sur JI; $+\infty[$ une primitive de f.
 - b-Calculer l'aire du domaine limité par la courbe (C), l'axe des abscisses et les deux droites d'équations x = 2 et x = 3.

5. Partie A

Soit g la fonction définie, sur IR, par $g(x) = (1-x)e^{-x} + 1$.

- 1) Calculer $\lim_{x\to -\infty} g(x)$ et $\lim_{x\to +\infty} g(x)$.
- 2) Dresser le tableau de variations de g. En déduire que g(x) > 0 pour tout réel x.

Partie B

- 1) On considère la fonction f définie sur IR par $f(x) = xe^{-x} + x$.
 - a) Calculer $\lim_{x\to-\infty} f(x)$ et $\lim_{x\to+\infty} f(x)$.
 - b) Montrer que la droite (d) d'équation y = x est une asymptote à (C).
 - c) Étudier la position de (C) par rapport à (d).
- 2) a) Vérifier que f'(x) = g(x) et dresser le tableau de variations de f.
 - b) Etudier la concavité de (C) et vérifier qu'elle admet un point d'inflexion dont on déterminera les coordonnées.
 - c) Déterminer le point E de (C) où la tangente (T) à (C) est parallèle à (d). (dans la suite on note par y_E l'ordonnée de E)
 - *d) Tracer (d)*, *(T) et (C)*.
- 3) Considérons la fonction h définie par $h(x) = \ln(y_E f(x))$.
 - a) Déterminer le domaine de définition de f.
 - b) Dresser le tableau de variation de h.
- 4) Calculer l'aire A, du domaine limité par (C), (d), et les deux droites d'équations (x = -1) et (x = 1).

Exponentielle (4)

- **6.** A) On considère la fonction g, définie sur \mathbb{R} , par $g(x) = e^x x + 1$.
 - 1) a- Calculer $\lim_{x\to -\infty} g(x)$ et $\lim_{x\to +\infty} g(x)$.
 - 2) a- Calculer g'(x) et dresser le tableau de variations de g. b- En déduire que g(x) > 0 pour tout réel x.
- B) On considère la fonction f, définie sur \mathbb{R} , $par f(x) = xe^{-x} + x 1$ et on désigne par (C) sa courbe représentative dans un repère orthonormé (O; \vec{i} , \vec{j}). (Unité 2 cm)
- 1) a- Calculer $\lim_{x \to -\infty} f(x)$
 - b- Calculer $\lim_{x\to a} f(x)$ et vérifier que la droite (d) d'équation y = x l est une asymptote à (C).
 - c-Déterminer les coordonnées du point d'intersection de (C) avec son asymptote (d) et étudier la position relative de (C) et (d).
- 2) a- Montrer que $f'(x) = \frac{g(x)}{e^x}$. b- Dresser le tableau de variations de f.
- 3) a-Montrer que l'équation f(x) = 0 admet une racine unique α .
 - b- vérifier que $0.6 < \alpha < 0.7$.
- 4) Soit $A\left(1; \frac{1}{e}\right)$. Vérifier que A appartient à (C), et montrer que la tangente (T) en A à (C) est parallèle à (d).
- 5) Tracer (d), (T) et (C).
- 6) Calculer, en cm², l'aire $S(\alpha)$ du domaine limité par la courbe (C), la droite (d) et les droites d'équations x = 0 et $x = \alpha$, et montrer que $S(\alpha) = \alpha + 1 \frac{1}{\alpha}$
- 7) On désigne par f^{-1} la fonction réciproque de f dans \mathbb{R} .

 Indiquer le domaine de définition de f^{-1} et résoudre l'inéquation $f^{-1}(x) > 1$.