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Cycloidal motion in an electromagnetic field 

Luca Moroni – November 2017 – www.lucamoroni.it 
 

Building the motion equations 

A charged particle is introduced in a region where there is a uniform electric field (intensity E) and a uniform 

magnetic field (intensity B). 

We’ll call q  and m  the charge and mass of the particle and we’ll assume that the electric field is directed as the 

y axis and that the magnetic field is directed as the z axis. 

 

We’ll also assume that the particle starts at the origin of the reference frame with an initial speed whose 

components are ( ) 00x xv v= , ( ) 00y yv v=  and ( ) 00z zv v= . Using the standard notation we’ll indicate i , j  and k

the unit vectors (versors) directed respectively as the x , y , and z  axes.  

The forces acting on the particle will then be the electric force 
EF  and the Lorentz force 

LF : 

( )y x

qE

qB v v

= ⋅

= ⋅ − ⋅

E

L

F j

F i j
  

There’s no force directed along the z  axis so we’ll just notice that, if 
0 0

z
v ≠ , there will be a vertical motion with 

equation ( ) 0zz t v t=  adding to the motion in the xy  plane. We’ll make no further reference to this vertical motion 

in the following lines, mainly focused on the xy  motion. 

 

Considering separately the resulting motion in the x  and y  direction we get the differential equations  

x y

qB
v v

m
=�  (1) 

( )y x

q
v E Bv

m
= −�  (2) 

 

Assuming1 0B ≠  we can extract 
y

v  from eq. (1) and differentiate 

y x

m
v v

qB
= �  

y x

m
v v

qB
=� ��  

Putting this in eq. (2) we get a single second order ODE in ( )xv t  

( )x x

m q
v E Bv

qB m
= −��  

that is  

                                                   

1 If 0B =  the motion is a simple parabolic motion with 
0

2

0

0 ( ) (0)

( ) (0)

x x

y y

v x t v t x

q q
v E y t E t v t y

m m

= = + 
 

→ 
= = ⋅ + +  

�

�
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2 2

x x

qB q
v v E

m m
B

   
+ =   
   

��  (3) 

Above equation is a second order non homogeneous linear differential equation with constant coefficients that 

can be solved exactly. 

If we set 
Bq

m
ω =  the solution for ( )xv t  is 

( ) ( ) ( )0 0cos sinx x y

E E
v t v t v t

B B
ω ω

 
= − + + 
 

 (4) 

From 
y x

m
v v

qB
= �  (eq. (2)) we also have 

( ) ( ) ( )0 0sin cosy x y

E
v t v t v t

B
ω ω

 
= − − + 

 
 (5) 

 

The parametric equations of the trajectory can be derived by integrating eq. (4) and eq. (5) 

( ) ( ) ( ) ( )0 0 00 sin cos
x y y

m q E
x t x Et v t v t v

Bq m B
ω ω

  
= + + − − +  

  
  

( ) ( ) ( ) ( )0 0 00 cos sinx y x

m E E
y t y v t v t v

Bq B B
ω ω

  
= + − + − +  

  
 

 

Recalling that we have assumed ( )0 0x = , ( )0 0y =  and rearranging the terms we get the following parametric 

equations: 

( ) ( ) ( )

( ) ( ) ( )

0 0 0

0 0 0

sin cos

cos sin

x y y

x y x

m E E m
x t v t v t t v

Bq B B Bq

m E m E
y t v t v t v

Bq B Bq B

ω ω

ω ω

   
= − − + +   

   


     = − + + −         

 (6) 

 

The motion in the x  direction is an oscillatory motion around a moving point having speed E B . The moving 

oscillation center follows the motion equation ( ) 0ave y

E m
tx t v

B Bq
+=  

The motion in the y  direction is also an oscillatory motion around the middle point with 
0 xave

m E
v

Bq
y

B

 
−


= 


  

Both motions have the same oscillation amplitude 
2

2

0 0x y

Em
A v v

Bq B

 
= − + 

 
  

if 
0 0

x
v =  and 0

0
y

v = the trajectory will be a cycloid and the oscillation amplitude will be 

0 2

mE
A

B q
=  
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The trajectory is a trochoid (general case of a cycloid) 

The parametric equations of motion (6) can be rewritten in the form 

( ) ( )

( ) ( )

0

0

sin

c

1

s

1

1
o

y

x

E
x t A t t v

B

E
y t A t v

B

ω ϕ ω

ω

ω ω

ϕ
ω


= − + +


  = − + −   

 (7) 

where  

2

2

0 0

1
x y

E
A v v

Bω

 
= − + 

 
, 

0

2

2

0 0

cos
x

x y

E
v

B

E
v v

B

ϕ
−

=

 
− + 

 

,  
0

2

2

0 0

sin
y

x y

v

E
v v

B

ϕ =

 
− + 

 

, 
Bq

m
ω =  

The parametric equations (7) are those of the curve called trochoid. 

The trochoid is defined as the curve traced by a point P  fixed at some distance 
tr  from the center of a circle that 

rolls without slipping along a line. 

 
fig. 1: a prolated trochoid 

 

 
fig. 2: a curtated trochoid 

 

 
fig. 3: a cycloid (common trochoid)  

 

The general trochoid parametric equations are  

( ) ( )

( ) ( )

sin

cos

x t a t b t

y t a b t

ω ω

ω

 = +


= +
 

where a is the distance between P  and the center of the rolling circle and b is the radius of the rolling circle. 

If P lies inside the circle (b < a) the trochoid is called curteted trochoid. 

If P lies on the circumference (b = a) the trochoid is called common trochoid or cycloid. 

If P lies outside the circle (b > a) the trochoid is called prolate trochoid. 
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A prolate trochoid contains loops. A cycloid (common trochoid) has cusps at the points where P touches the line on which the 

circle rolls. 

 

In our case the distance of the point P generating the trochoid from the center of the rolling circle is: 
2

2

0 0

1
t x y

E
r v v

Bω

 
= − + 

 
 

while the “rolling circle” has radius  

1
c

E
r

Bω
=   

Its center follows the line 0

1
x

E
y v

Bω

 
= − 

 
 with speed 

E

B
  

A cycloid is a special case of a trochoid occurring when 
t cr r= . So the condition to have a cycloid is: 

2

2

0 0

1 1
x y

E E
v v

B Bω ω

 
= − + 

 
 that is 

2

2

0 0x y

E E
v v

B B

 
− + = 

 
 

 

The trochoidal/cycloidal motion and the equivalence principle 

The motion described by equations (6) in the original frame of reference S 

( ) ( ) ( )

( ) ( ) ( )

0 0 0

0 0 0

sin cos

:

cos sin

x y y

x y x

m E E m
x t v t v t t v

Bq B B Bq
S

m E m E
y t v t v t v

Bq B Bq B

ω ω

ω ω

   
= − − + +   

   


     = − + + −         

 (6) 

can be transformed to a different set of equations describing the motion as seen in an alternative frame of reference 

'S  with a moving origin ' ;0
E

O t
B

 
 
 

 (canceling the x-translation speed 
E

B
 that is present in S). 

In this new set of equations the initial speeds will be 0 0' x x

E
v v

B
= − ,  0 0

'
y y

v v=  and in 'S  the parametric equations 

of motion will then be: 

( ) ( ) ( )( )

( ) ( ) ( )( )

0 0 0

0 0 0

' ' sin cos

' :

' ' cos sin '

x y y

x y x

m m
x t v t v t v

Bq Bq
S

m m
y t v t v t v

Bq Bq

ω ω

ω ω


= − +



 = + −


 (8) 

representing a circular motion around the fixed point ( )0 0;' 'y x

m m
v v

Bq Bq
−

 
 
 

  

This same motion can be obtained in the original (static) frame of reference ( ): 0;0S  if we set 0E =  in equations 

(6). Thence we can define another system ''S  identical to S  but with the electric field removed: 

( ) ( ) ( )( )

( ) ( ) ( )( )

0 0 0

0 0 0

'' sin cos

'' :

'' cos sin

x y y

x y x

m m
x t v t v t v

Bq Bq
S

m m
y t v t v t v

Bq Bq

ω ω

ω ω


= − +



 = + −


 (9) 

The two motions, seen in the two different frames of reference 'S  and ''S , are identical.   
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Above arguments shows that the trochoidal/cycloidal motion can be reduced to a pure circular motion in a frame 

of reference with a moving origin having coordinates ' ;0
E

O t
B

 
 
 

 or in a static physical system where there is only 

the magnetic field B.  

This also means that we can set an alternative inertial frame of reference ''S  in which the motion is just driven by 

the magnetic field B  instead of one in which the motion is the result of the combined effects of both an electric 

and a magnetic field. The effect of  the electric field E  in S  can be eliminated in ''S  by setting '' 0E =  and 

0 0'' x x

E
v v

B
= −  

The following table summarize the different situations described above 

S  with ( )0;0O  'S  with ' ;0
E

O t
B

 
 
 

 ''S  with ( )'' 0;0O  

Both E and B are present 

Both E and B are present. The 

observer moves with speed 
E

B
 

E=0 and only B is present. 

Initial speeds: 0 0
,

x y
v v  

Initial speeds: 0 0' x x

E
v v

B
= − ,  

0 0
'

y y
v v=  

Initial speeds: 0 0
,

x y
v v  

Trochoidal motion Circular motion around 'O  Circular motion around 'O  

 

Since the principle of relativity says that the forces acting in nature must have the same form in every inertial 

frame of reference it follows that the magnetic force (Lorentz force) and the electric force are just different aspects 

of some more general force that combine both of them.  

That’s the electromagnetic force. It will be a pure electric force within some frame of reference, a pure magnetic 

force within some other frame of reference and a combination of both of them in some other frame of reference. 

The problem is that we should use a tensor (electromagnetic tensor ) to represent the electromagnetic force (instead 

of separated vectors).  

 

The energy 

The general motion equation (6) shows that, whatever are the initial conditions, if both E and B are present, the 

charged particle will always end up translating in the x-direction (direction of the vector ×E B ) with an average 

speed ave

E
v

B
= .  

This motion can be very simple in the case of the Wiener filter (with initial conditions 0x

E
v

B
= , 0

0
y

v = ) where 

the motion will be the simple linear uniform motion described by the equations 

 

( )

( ) 0

E
x t t

B

y t


=


 =

 

With other initial conditions for the initial speed we’ll have the trochoidal motions examined before but they can 

nonetheless be considered as a combination of linear motion with constant speed ave

E
v

B
=  in the x-direction and 

an oscillatory motion (with zero average speed). 

In the case of a null initial speed (
0 0xv = , 0

0
y

v = ) we get the cycloidal motion 
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( ) ( )

( ) ( )( )

2

2

sin

1 cos

mE E
x t t t

B q B

mE
y t t

B q

ω

ω


= − +



 = −


 

and this motion too has an average translational speed in the x-direction ave

E
v

B
= . 

That’s a little surprising. If we start with no kinetic energy how comes that we end up with the some positive 

kinetic energy? 

The answer is in the potential energy. 

There’s no potential energy for the magnetic field (since the Lorentz’ force doesn’t do any work being always 

perpendicular to the infinitesimal displacement). But there is a potential energy for the electric field. 

The gain in the average kinetic energy is balanced by a loss in the average potential energy of the electric field. 

In fact we can see from equations (6) that the average displacement in the y-direction (with 
0 0

x
v = )  is  

02ave x

mE m
y v

B q Bq
= −  

and the average electric potential energy will then be 

0ave ave x

E E
U qEy m v

B B

 
∆ = − = − − 

 
 

Let’s now calculate the average kinetic energy. Even if the average translational speed in the x-direction is  

ave

E
v

B
=  this doesn’t mean that the average kinetic energy is 

2

21 1

2 2
ave

E
mv

B

 
=  

 
. In fact the wobbling in the 

trochoidal motion contribute some extra kinetic energy. 

The average kinetic energy can be calculated as 

( ) ( )( )2 2

0

1 1
d

2

T

ave x yKE m v t v t t
T

= +⌠

⌡

  

where 
2

2
m

T
Bq

π
π

ω
= = , ( ) ( ) ( )0 0cos sinx x y

E E
v t v t v t

B B
ω ω

 
= − + + 
 

, ( ) ( ) ( )0 0sin cosy x y

E
v t v t v t

B
ω ω

 
= − − + 

 
 

Doing the calcs yields 

( )( )2 2 2 2

0 0 0

2

2 21

2

x x y

ave

E BEv B v v
KE m

B

− + +
=    

Subtracting the initial kinetic energy ( )2 2

0 0 0

1

2
x yKE m v v= +  we have 

( )( )
( )

2 2 2 2

0 0 0 2 2

0 00 2

2 21 1

2 2

x x y

ave ave x y

E BEv B v v
K KE m m v v

B
KE

− +
= = +−

+
∆ −  

 

( )
00

2

0

2

x

ave ave x

E BEv E E
K KE m m v

B B
K

B
E

−  
∆ = = = −


− 


 

then we have 0
ave ave

K U∆ + ∆ = , respecting the conservation of the total energy  

The same result can be obtained more precisely (with calculations more complicated) considering the punctual 

values of the kinetic energy ( )K t∆  and of the electric potential energy ( )U t∆  and showing that, for every t is: 

( ) ( ) 0K t U t∆ + ∆ =  

In fact 
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( ) ( ) ( )( ) ( )2 2 2 2

0 0

1 1

2 2
x y x yK t m v t v t m v v∆ = + − +

( ) ( ) ( ) ( ) ( ) ( )
2 2

2 2

0 0 0 0 0 0

1
cos sin sin cos

2
x y x y x y

E E E
K t m v t v t v t v t v v

B B B
ω ω ω ω

       
∆ = − + + + − − + − +       

        
 

that simplify to 

 

( ) ( )( ) ( )0 01 cos sin
x y

E E
K t m v t v t

B B
ω ω

  
∆ = − − +  

  
  

The electric potential energy is ( ) ( )U t q E y t∆ = − . We need rearrange the expression of ( )y t  in equations (6) 

from 

( ) ( ) ( )0 0 0cos sin
x y x

m E m E
y t v t v t v

Bq B Bq B
ω ω

    
= − + + −    

    
 

to 

( ) ( )( ) ( )0 01 cos sin
x y

m E
y t v t v t

Bq B
ω ω

  
= − − +  

  
  

Then we have 

( ) ( ) ( )( ) ( )0 01 cos sin
x y

E E
U t q E y t m v t v t

B B
ω ω

  
∆ = − = − − − +  

  
  

It is clearly ( ) ( ) 0K t U t∆ + ∆ =  

Conclusions 

In the setting proposed, with a uniform electric field and a perpendicular uniform magnetic fields acting on a 

charged particle, these fields produce, in the plane perpendicular to the magnetic field, a trochoidal trajectory 

(general case of a cycloidal motion). We get a cycloid in the special case of zero initial speed. 

Choosing an appropriate different inertial reference frame this motion can be accounted of by the only magnetic 

field. In this specific frame of reference the resulting motion is a circular motion with constant speed.  

Then the different effects of the magnetic and electric field depends on the choice of the inertial frame of reference. 

There is a great lecture by Richard Feynman that investigate about these themes “The relativity of magnetic and 

electric fields”. 

 

 

 


