	Activity 4.4: Contextual Situations. Applications of the Definite Integral
	Name Angel Guerra ID A01570288 Date (13/11/2018
	Using your knowledge on Calculus solve the following
	1. A particle moves along a path with a velocity given by $v(t) = t^3 - 8t^2 + 15t$ in meters/second. a) Find the displacement of the particle on the first 6 seconds 12 m b) Find the total distance traveled by the particle on the first six seconds 28.663 m $v(t) = t^3 - 8t^2 + 15t^2$ $v(t) = t^3 - 8t^2 + 15t^2$ v(t
	2. An object moves on a linear path with a velocity given by $v(t) = \cos(2t)$ in meters/second a) Find the displacement of the object from $t=0$ until $t=\pi$ seconds b) Find the total distance traveled by the object from $t=0$ until $t=\pi$ seconds
4	3. The acceleration of a particle, traveling along a linear path, is given by $a(t) = Sn(t)$ in meters/second ² , the particle starts from rest. a) Find the equation that gives the velocity of the particle $\sqrt{(4)^2 - \cos(4)}$ (4)
	c) Find the total distance traveled by the particle on the first $3\pi/2$ seconds Silling
(]+)	$x(t) = -\sin(t) + t$ $y(t) = -\cos(t) + 1$ $q(t) = \sin(t)$ 4. An object is moving along a path in such a way that the acceleration of the object is given
	by $a(t) = -\frac{1}{\sqrt{t+1}}$ in meters/second ²
	a) Find the equation that gives the velocity of the object, the initial velocity of the object was 2 meters/second $v(t) = -2(t+1) + 4$ b) Find the displacement of the object from $t=0$ until $t=4$ seconds $v_1 + 4$ seconds $v_2 + 4$ seconds $v_$
El de	By: Teachers that Designed the Course Translated by: Ara Mánica M Paniarus $2 = -2 + C - 2\sqrt{4+1}^{2} + 4$ 4 + 4 + 4 4 + 4 + 4 + 4 4 + 4 + 4 4 + 4 + 4 + 4 + 4 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +

I think that it was useful to see how we can use integrals in a real world context.