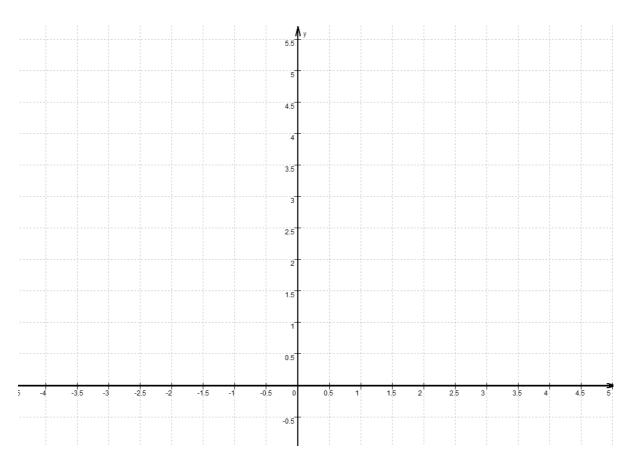

Quadratische Funktionen


Die Funktion $f(x) = x^2$ ordnet der Länge einer Quadratseite den Flächeninhalt des zugehörigen Quadrats zu.

Wertetabelle für $f(x) = x^2$

x	1	2	3	4	1/2	1/4	<u>3</u>	-1	-2	-3	-4	- <u>1</u>
$f(x) = x^2$												

Graph der Funktion $f(x) = x^2$:

Welche Eigenschaften hat dieser Graph?

Graphen quadratischer Funktionen

- 1. Zeichnen Sie in ein Koordinatensystem:
- a) $f(x) = x^2$
- $f(x) = 2x^2$ $f(x) = 3x^2$ $f(x) = \frac{1}{2}x^2$ $f(x) = \frac{1}{4}x^2$

- b) $f(x) = -x^2$ $f(x) = -2x^2$ $f(x) = 3x^2$ $f(x) = -\frac{1}{2}$ x^2 $f(x) = -\frac{1}{4}$ x^2 Was fällt auf?

Quadratische Funktionen der Form $f(x) = rx^2$, r $\neq 0$

Auswirkungen des Faktors r auf den Graphen der Funktion:

2. Zeichnen Sie in ein Koordinatensystem: $f(x) = x^2$, $f(x) = (x + 2)^2$, $f(x) = (x - 1)^2$ Quadratische Funktionen der Form $f(x) = (x - s)^2$

Auswirkungen von s auf den Graphen der Funktion:

3. Zeichnen Sie in ein Koordinatensystem: $f(x) = x^2$, $g(x) = x^2 + 2$, $h(x) = x^2 - 1$ Quadratische Funktionen der Form $f(x) = x^2 + t$

Auswirkungen von tauf den Graphen der Funktion:

4. Zeichnen Sie in ein Koordinatensystem: $f(x) = 2(x + 1)^2 - 3$ und $f(x) = -(x - 2)^2 + 4$

 $f(x) = r(x - s)^2 + t$, wobei $r \neq 0$ Allgemein: (*)

Wie sehen die Graphen der Funktionen im Vergleich zur Normalparabel aus? Welche besondere Rolle spielen die Zahlen s und t?