

Average Rate of Change (AROC)

• The average rate of change of y over an interval is equal to $\frac{change iny}{change in x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(b) - f(a)}{b - a}.$

Example: Find the average rate of change of the function with rule $f(x) = x^2 - 2x + 5$ as *x* changes from 1 to 5.

 $f(x) = x^{2} - 2x + 5$ $f(1) = (1)^{2} - 2(1) + 5 = 4 \quad \& \quad f(5) = (5)^{2} - 2(5) + 5 = 20$ $AROC = \frac{20 - 4}{5 - 1} = \frac{16}{4} = 4$

Instantaneous Rate of Change & 1st Principles

- If we look at the graph on the right, $y = x^2$ and wanted to calculate the rate of change at Point *P*, we then calculate the gradient between *P* and *Q*.
- If we bring the point *Q* closer and closer to *P* then the gradient will be approaching the value of the tangent at *P*.
- $m(PQ) = \frac{(a+h)^2 a^2}{a+h-a} = \frac{a^2 + 2ah + h^2 a^2}{h} = \frac{2ah + h^2}{h} = 2a + h$
- If Q approaches P then $h \rightarrow 0$, the gradient approaches 2a.
- The instantaneous rate of change of a function f at point P on a graph of y = f(x) is equal to the gradient of the tangent to the graph at P. So, to find the instantaneous rate of change at point P, we evaluate the derivative of the function at P.
 - The instantaneous rate of change of f at x = a is f'(a).

Example: Find $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ for

$$f(x) = 3x^{2} + 2x + 2$$

$$\frac{f(x+h) - f(x)}{h} = \frac{3(x+h)^{2} + 2(x+h) + 2 - (3x^{2} + 2x + 2)}{h}$$

$$= \frac{3x^{2} + 6xh + 3h^{2} + 2x + 2h + 2 - 3x^{2} - 2x - 2}{h}$$

$$= \frac{6xh + 3h^{2} + 2h}{h}$$

$$= 6x + 3h + 2 \implies \lim_{h \to 0} (6x + 3h + 2) = 6x + 2$$

$$intropy = 6x + 3h$$

$$= \frac{1}{2 - (x^{3} + 3x^{2}h + 3xh^{2} + h^{3}) - 2 + x^{3}}{h}$$

$$= \frac{-3x^{2}h - 3xh^{2} - h^{3}}{h}$$

$$= -3x^{2} - 3xh - h^{2}$$

$$\Rightarrow \lim_{h \to 0} (-3x^{2} - 3xh - h^{2}) = -3x^{2}$$

• **Ex9A** 1, 2, 3, 4 LHS, 8 LHS

The derivative of x^n

• If $f(x) = x^n$ then $f'(x) = nx^{n-1}$ and if $f(x) = ax^n$ then $f'(x) = nax^{n-1}$.

The derivative of a constant

• If f(x) = c then f'(x) = 0.

Examples: Find the derivative of the following:

1.
$$y = 3x^{6} - 4x^{3}$$

2. $f(x) = 3x(2x^{2} - 7)$
3. $f = 2g^{2} - 5$
4. $h = \frac{6a^{2} + 7a^{4}}{a}$
5. $y = x + \frac{1}{x} + \frac{6}{x^{3}}$

- Remember to always to subtract 1 from the power.
- Be careful with + and signs.

Solutions
1.
$$\frac{dy}{dx} = 18x^2 - 12x^2$$

2. Expand first: $f(x) = 6x^3 - 21x$ therefore $f'(x) = 18x^2 - 21$
3. $\frac{df}{dg} = 4g$
4. Simplify first: $h = 6a + 7a^3$ therefore $\frac{dh}{da} = 6 + 21a^3$
5. $y = x + x^{-1} + 6x^{-3}$
 $\frac{dy}{dx} = 1 - x^{-2} - 18x^{-4}$ or $\frac{dy}{dx} = 1 - \frac{1}{x^2} - \frac{18}{x^4}$
• **Ex9B** 1, 2, 4, 5, 6

The Gradient of a Curve

- The gradient of a curve is not constant.
- The gradient of a curve at a certain point is equal to the gradient of the tangent to the curve at that point.
- A tangent is a line that touches another curve at one point only (i.e.it does not cross it).

- The line T₁ is a tangent to the curve at point *a*.
- The line T₂ is a tangent to the curve at point *b*.
- Consider $y = 4x^3 8x^2$ and its derivative $\frac{dy}{dx} = 12x^2 16x$
- What does all this mean?
- $y = 4x^3 8x^2$ is a formula that gives the <u>y-value</u> of the curve at any point x.
- $\frac{dy}{dx} = 12x^2 16x$ is a formula that gives the <u>gradient</u> of the curve at any point x.

Example 1: What is the gradient of the curve $y = 4x^3 - 8x^2$ at x = -2? *Solution:*

 $\frac{dy}{dx} = 12x^2 - 16x$ at x = -2 $\frac{dy}{dx} = 12(-2)^2 - 16(-2)$ $\frac{dy}{dx} = 80$

Example 2: What are the co-ordinates of the point(s) of the curve $y = 4x^3 - 8x^2$, where the gradient is -4?

Solution:
$\Rightarrow \frac{dy}{dx} = -4$
$\therefore -4 = 12x^2 - 16x$
$0 = 12x^2 - 16x + 4$
0 = 4(3x - 1)(x - 1)
$\therefore x = \frac{1}{3} or x = 1$
When $x = \frac{1}{3}$, $y = 4\left(\frac{1}{3}\right)^3 - 8\left(\frac{1}{3}\right)^2 = -\frac{20}{27}$ $\therefore \left(\frac{1}{3}, -\frac{20}{27}\right)$
When $x = 1$, $y = 4(1)^3 - 8(1)^2 = -4$:: (1,-4)

• Ex 9B 7, 11, 12, 13, 14, 16, 17 Ex 9C 4, 5, 6, 8, 10

Notes: {x: h'(x) > 0 }

Means:	$\{x: \}$	Find the <i>x</i> -values where
	h'(x)	The gradient function,
	>0	that is positive

Strictly increasing and strictly decreasing functions

A function f is said to be *strictly increasing* when a < b implies f(a) < f(b) for all a and b in its domain.

The definition does not require f to be differentiable, or to have a non-zero derivative, for all elements of the domain.

If a function is strictly increasing, then it is a one-to-one function and has an inverse that is also strictly increasing.

- If f'(x) > 0 for all x in the interval then the function is strictly increasing.
- If f'(x) < 0 for all x in the interval then the function is strictly decreasing.

Strictly Increasing

Example 1: The function $f : R \to R$, $f(x) = x^3$ is strictly increasing with zero gradient at the origin.

The inverse function $f^{-1}: R \to R$, $f^{-1}(x) = x^{\frac{1}{3}}$, is also strictly increasing, with a vertical tangent of undefined gradient at the origin.

Example 2: The hybrid function g with domain $[0, \infty)$ and rule:

 $g(x) = \begin{cases} x^2 & 0 \le x \le 2\\ 2x & x > 2 \end{cases}$ is strictly increasing, and is not differentiable at x = 2.

Example 3: Consider $h: R \rightarrow R, h(x) = |x| - x^3$

H is not strictly increasing, But is strictly increasing over the

interval
$$\left[0, \frac{1}{\sqrt{3}}\right]$$
.

Strictly Decreasing

A function f is said to be *strictly decreasing* when a < b implies f(a) > f(b) for all a and b in its domain.

A function is said to be strictly decreasing over an interval when a < b implies f(a) > f(b) for all a and b in its interval.

Example 4: The function $f: R \to R, f(x) = \frac{1}{e^x + 1}$

The function is strictly decreasing over R.

Example 5: The function $g: R \rightarrow R, g(x) = \cos(x)$

g is not strictly decreasing.

But g is strictly decreasing over the interval $[0, \pi]$. (also $[-2\pi, -\pi]$ and $[2\pi, 3\pi]$ etc.

• **Ex9B** 18, 19, 20, 21,

Sketching the Gradient Function

GRAPH OF THE ORIGINAL FUNCTION	GRAPH OF THE GRADIENT FUNCTION
Where the gradient is flat (i.e at all stationary points)	Will cross the x – axis
Where there is a positive gradient (i.e. slopes)	Will be above the x – axis
Where there is a negative gradient (i.e. slopes)	Will be below the x – axis
Where the gradient gets flatter	Gets closer to x – axis
Where the gradient gets steeper	Gets further away from x – axis
At the steepest part of each 'section' of the graph	Will have a 'peak'

Example 1: Sketching the Gradient Function

 $y = 4x^2 - x^4$

Example 2: Sketch the gradient graph of:

Example 3: Sketch the gradient function of:

• **Ex9D** 1 acdefhi, 2 acdegi, 3, 5, 6, 7

Chain Rule – The derivative of (function)ⁿ

(The function in a function rule or Composite Function rule).

Example 1: Find the derivative of $y = -3(14x^2 - x)^4$.

Solution:

In words: find the derivative of "the thing" as a whole, then multiply it by the derivative of the "inside". $\frac{dy}{dx} = -12(14x^2 - x)^3(28x - 1)$ $\frac{dy}{dx} = -12[x(14x - 1)]^3(28x - 1)$ $\frac{dy}{dx} = -12x^3(14x - 1)^3(28x - 1)$

<u>In symbols</u>: If $y = (u)^n$ where u = f(x), then $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

Let $u = 14x^2 - x$, $y = -3u^4$

$$\frac{du}{dx} = 28x - 1, \qquad \frac{dy}{du} = -12u^3 = -12(14x^2 - x)^3$$

:.
$$\frac{dy}{dx} = -12(14x^2 - x)^3(28x - 1)$$
 etc...

Example 2: Find f'(x) if $f(x) = (2x^4 - 3)^{18}$.

$$f'(x) = 18(2x^4 - 3)^{17}(8x^3)$$

$$f'(x) = 144x^3(2x^4 - 3)^{17}$$

Example 3: If $y = \sqrt{x^3 - 3}$ then find $\frac{dy}{dx}$.	$\frac{d f(g(x))}{dx} = g'(x) \cdot f'(g(x))$
$y = (x^{3} - 3)^{\frac{1}{2}}$ $\frac{dy}{dx} = \frac{1}{2}(x^{3} - 3)^{-\frac{1}{2}}(3x^{2})$ $\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{(x^{3} - 3)^{\frac{1}{2}}} \times 3x^{2}$	Example 4 $\frac{d}{dx}(f(x^2))$ $= 2x \cdot f'(x^2)$
$\frac{dy}{dx} = \frac{3x^2}{2(x^3 - 3)^{\frac{1}{2}}}$	Example 5 $\frac{d}{dx} \left((f(x))^3 \right)$ $= 3f'(x) \cdot (f(x))^2$

Differentiating Rational Powers

Examples: Find the derivative of each of the following with respect to *x*.

$$y = \frac{2}{\sqrt[5]{x}} + 3x^{\frac{2}{7}}$$

$$y = 2x^{-\frac{1}{5}} + 3x^{\frac{2}{7}}$$

$$\frac{dy}{dx} = 2\left(-\frac{1}{5}x^{-\frac{6}{5}}\right) + 3\left(\frac{2}{7}x^{-\frac{5}{7}}\right)$$

$$\frac{dy}{dx} = -\frac{2}{5}x^{-\frac{6}{5}} + \frac{6}{7}x^{-\frac{5}{7}}$$

$$or$$

$$= \frac{-2}{5\sqrt[5]{x^{6}}} + \frac{6}{7\sqrt[7]{x^{5}}}$$

$$(b)$$

$$f(x) = \frac{3\sqrt{x^{2} + 2x}}{f(x) = (x^{2} + 2x)^{\frac{1}{3}}} \times (2x + 2) \quad chain rule$$

$$f'(x) = \frac{2x + 2}{3\sqrt[3]{(x^{2} + 2x)^{2}}}$$

• **Ex9F** 2, 3,4, 6, 7

• Derivatives of Transcendental functions

The derivative of e^{kx}

• In general: If $y = e^{kx}$ then $\frac{dy}{dx} = ke^{kx}$.

If
$$y = ae^{f(x)}$$
 then $\frac{dy}{dx} = af'(x)e^{f(x)}$

Example 1: Find the derivatives of:

- (i) $y = e^{2x}$
- (ii) $y = e^{-5x}$
- (iii) $y = e^{(x^2 + 2x)}$

Solutions: (i) $\frac{dy}{dx} = 2e^{2x}$ (ii) $\frac{dy}{dx} = -5e^{-5x}$ (iii) $\frac{dy}{dx} = (2x+2)e^{(x^2+2x)}$

Example 2: Find f'(x) given $f(x) = x^2 e^{4x}$.

Solution:

Product Rule: $f'(x) = (2x)(e^{4x}) + (4)e^{4x}(x^2)$ $HCF = 2xe^{4x}$ $f'(x) = 2xe^{4x}(1+2x)$

• **Ex9G** 1, 2, 3, 4, 5, 6

Derivative of $\log_e x$

• In general, if $y = \log_e x$ then $\frac{dy}{dx} = \frac{1}{x}$ • If $y = \log_e(h(x))$ then $\frac{dy}{dx} = \frac{1}{h(x)} \times h'(x) = \frac{h'(x)}{h(x)}$ $y = \log_e |x|$ • If $y = \begin{cases} \log_e x, x > 0\\ \log_e(-x), x < 0 \end{cases}$ $dy = \begin{cases} \frac{1}{x}, x > 0\\ \frac{1}{-x} \times -1 = \frac{1}{x}, x < 0 \end{cases} = \frac{1}{x}, \text{ for } x \in R \setminus \{0\}$

Examples: Find the derivatives of:

(i) $y = \log_e 3x$ (ii) $y = \log_e (x^2 + x)$ (iii) $y = \log_e x^2 + x$

Solution: (i) $\frac{dy}{dx} = \frac{1}{3x} \times 3 = \frac{1}{x}$ (note: any rule of the form $y = \log_e(kx)$ has a derivative of $\frac{1}{x}$), $x \neq 0$ (ii) $\frac{dy}{dx} = \frac{1}{x^2 + x} \times (2x + 1) = \frac{2x + 1}{x^2 + x}$, $x \neq -1, 0$ (iii) $\frac{dy}{dx} = \frac{1}{x^2} \times 2x + 1 = \frac{2x}{x^2} + 1 = \frac{2}{x} + 1$, $x \neq 0$

Ex9H 1, 2, 3, 4, 5, 6, 7, 8

• Derivative of the Trigonometric Functions

• If
$$y = \sin(kx)$$
 then $\frac{dy}{dx} = k\cos(kx)$

• If
$$y = \cos(kx)$$
 then $\frac{dy}{dx} = -k\sin(kx)$

•
$$y = \tan(kx)$$
 then $\frac{dy}{dx} = k \sec^2(kx)$ or $\frac{k}{\cos^2(kx)}$

Examples: Find the derivative of the following: $\begin{pmatrix} n \\ n \end{pmatrix} = \begin{pmatrix} 1 \\ n \end{pmatrix}$

(i)
$$y = \cos\left(\frac{x}{3}\right) = \cos\left(\frac{1}{3}x\right)$$

(ii) $y = \sin(x^3) =$
(iii) $y = \sin^3 x = (\sin x)^3$
(iv) $y = 3\tan(2x)$
(v) $y = \cos(3x^2 + 2)$

(i)
$$\frac{dy}{dx} = -\frac{1}{3}\sin\left(\frac{x}{3}\right)$$

(ii)
$$\frac{dy}{dx} = 3x^{2}\cos(x^{3})$$

(iii)
$$\frac{dy}{dx} = 3\cos x \sin^{2} x$$

(iv)
$$\frac{dy}{dx} = 3 \times 2.\sec^{2} 2x = 6\sec^{2} 2x$$

(v)
$$\frac{dy}{dx} = -6x\sin(3x^{2} + 2)$$

• **Ex9I** 1, 2, 3, 4, 5, 6

NOTE: Angle MUST be in RADIANS

$$\theta^{c} = \frac{\pi}{180} \times \theta^{o}$$
e.g.

$$\sin(x^{o}) = \sin\left(\frac{\pi x}{180}\right)$$

$$\frac{d}{dx}(\sin(x^{o})) = \frac{d}{dx}\left(\sin\left(\frac{\pi x}{180}\right)\right) = \frac{\pi}{180}\cos\left(\frac{\pi x}{180}\right) \quad or \ \frac{\pi}{180}\cos(x^{o})$$

The Product Rule – The derivative of the product of two functions

Example 1: Find $\frac{dy}{dx}$ (using the product rule) if $y = 3x^2(x^2 - 2x)$.

Solution:

<u>In words:</u> The derivative of the first term multiplied by the second term, ADD the derivative of the second term multiplied by the first term.

In symbols: If
$$y = u.v$$
 then $\frac{dy}{dx} = v.\frac{du}{dx} + u.\frac{dv}{dx}$
In the above example,
 $u = 3x^2$ and $v = x^2 - 2x$
 $\frac{dy}{dx} = 6x$ and $\frac{dv}{dx} = 2x - 2$
 $\frac{dy}{dx} = 6x^3 - 12x^2 + 6x^3 - 6x^2$
 $\frac{dy}{dx} = 12x^3 - 18x^2$

Example 2: Find f'(x) if $f(x) = \sqrt{x}(4x^3 - 12)$.

Solutio<u>n:</u>

Let
$$u = \sqrt{x}$$
 and $v = 4x^3 - 12$
 $\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$ and $\frac{dv}{dx} = 12x^2$
 $\frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}}(4x^3 - 12) + 12x^2(x^{\frac{1}{2}})$
 $\frac{dy}{dx} = \frac{4x^3 - 12}{2x^{\frac{1}{2}}} + 12x^{\frac{5}{2}}$
 $\frac{dy}{dx} = \frac{4x^3 - 12 + 24x^3}{2x^{\frac{1}{2}}}$
 $\frac{dy}{dx} = \frac{28x^3 - 12}{2x^{\frac{1}{2}}} = \frac{2(14x^3 - 6)}{2x^{\frac{1}{2}}} = \frac{14x^3 - 6}{\sqrt{x}}$

Example 3: Find f'(x) if $f(x) = e^{2x} \sin(2x+1)$.

Solution:

• **Ex9J** 1, 2, 3, 4, 5, 6, 7, 8

Let
$$u = e^{2x}$$
 and $v = \sin(2x+1)$
 $\frac{du}{dx} = 2e^{2x}$ and $\frac{dv}{dx} = 2\cos(2x+1)$
 $\frac{dy}{dx} = 2e^{2x}.\sin(2x+1) + e^{2x}.2\cos(2x+1)$
 $\frac{dy}{dx} = 2e^{2x}(\sin(2x+1) + \cos(2x+1))$

Quotient Rule – The derivative of the quotient of two functions

• Used when you have a problem in fraction form.

Example 1: If $y = \frac{2x+4}{3x-7}$ then find $\frac{dy}{dx}$

Solution:

<u>In words:</u> The derivative of the top term, multiplied by the bottom term, subtract the derivative of the bottom term, multiplied by the top term, all over the bottom term squared.

<u>In symbols:</u> If $y = \frac{u}{v}$ then $\frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}$,	
In the above example:	
$u = 2x + 4 (top) \frac{du}{dx} = 2$ $v = 3x - 7 (bottom) \frac{dv}{dx} = 3$	$\frac{dy}{dx} = \frac{2(3x-7) - 3(2x+4)}{(3x-7)^2}$ $\frac{dy}{dx} = \frac{6x - 14 - 6x - 12}{(3x-7)^2}$ $\frac{dy}{dx} = \frac{-26}{(3x-7)^2}$

Example 2: If $y = \frac{x^2 - 1}{x^2 + 1}$ then find $\frac{dy}{dx}$. Solution: $\frac{dy}{dx} = \frac{2x(x^2 + 1) - 2x(x^2 - 1)}{(x^2 + 1)^2} = \frac{2x^3 + 2x - 2x^3 + 2x}{(x^2 + 1)^2} = \frac{4x}{(x^2 + 1)^2}$

Example 3: Find
$$\frac{dy}{dx}$$
 if $y = \frac{e^x}{e^{2x} + 1}$.

Solution:

$$\frac{dy}{dx} = \frac{(e^{2x} + 1) \cdot e^{x} - e^{x} \cdot 2e^{2x}}{(e^{2x} + 1)^{2}}$$
$$\frac{dy}{dx} = \frac{e^{x}(e^{2x} + 1 - 2e^{2x})}{(e^{2x} + 1)^{2}}$$
$$\frac{dy}{dx} = \frac{e^{x}(1 - e^{2x})}{(e^{2x} + 1)^{2}}$$

• **Ex9K** 1 aceg, 2 de, 4, 5a, 6a, 7

Continuous functions and Differentiable Functions

- The graph of a continuous function is one without breaks.
- It is usually a smooth unbroken curve, however it may have sharp corners.
- If the derivative of a function exists at a point on a curve this function is said to be **differentiable** at this point.
- The derivative exists at a point if it is possible to draw a tangent at that point. i.e. the curve must be **smooth** and **continuous**.

Note: No derivative exists at:

- "CUSP" point
- "END-POINT" (open or closed)
- "HOLE" point

Finding the Equation of a Tangent and a Normal

• P
$$(x, y)$$
 is a point on the curve $y = f(x)$.

- The Normal and Tangent are at right angles to each other.
- If *m* = gradient of the curve at P, then the gradient of the tangent at Point P = *m*
- The gradient of the normal at point P is -1
 - m
- The equation of the Tangent is: $y-y_1 = m(x-x_1)$.
- The equation of the Normal is:
- How would you find *m* if you knew the equation of the curve?
- Find $\frac{dy}{dx}$ and substitute the *x* coordinate of P into it.

Example 1: Find the equation of the tangent and of the normal to the curve $y = (2x+1)^9$ at the point (0,1).

Solution:
$$\frac{dy}{dx} = (9)(2)(2x+1)^8 = 18(2x+1)^8$$

At $x = 0$, $\frac{dy}{dx} = 18(2(0)+1)^8 = 18$, so m (tangent at $x = 0$) = 18 & m (normal at $x = 0$) = $\frac{-1}{18}$
Equation of the tangent:
 $y = 18x + c$
 $(0, 1) \therefore 1 = 18(0) + c$
 $c = 1$
 $y = 18x + 1$
Equation of the normal:
 $y = \frac{-1}{18}x + c$
 $(0, 1) \therefore 1 = \frac{-1}{18}(0) + c$
 $y = \frac{-1}{18}x + c$
 $(0, 1) \therefore 1 = \frac{-1}{18}(0) + c$
 $y = \frac{-1}{18}x + c$
 $(0, 1) \therefore 1 = \frac{-1}{18}(0) + c$
 $y = \frac{-x}{18} + 1$
 $y =$

• **Ex10A** 1, 2, 3, 6, 8ac, 9abc, 14, 16

Rates of Change

- What is a rate?
- If you work and earn \$12 an hour your rate of pay = \$12 per hour = \$12/hr.
- This is linked with calculus by ...

If P = total Pay(\$)& t = time worked (hr)The P = 12t& $\frac{dP}{dt} = 12$

 $\frac{dP}{dt}$ = rate of change of *P* with respect to *t*.

• For the unit of
$$\frac{dP}{dt}$$
, \$ per hour, $\frac{$}{hr}$.

If you have to find	Choose letters for the 2 variables	The rate you need is	So you'll need an equation relating	Unit of rate is
The rate of change of volume with respect to the radius	V= volume r = radius	$\frac{dV}{dr}$	V and r	$\frac{cm^3}{cm}$
The rate of increase of cost of production of dolls w.r.t the number of dolls	C = cost n = no. of dolls	$\frac{dC}{dn}$	<i>C</i> and <i>n</i>	$\frac{\$}{doll}$
The rate of change of circumference w.r.t height	C = circumference h = height	$\frac{dC}{dh}$	C and h	$\frac{mm}{mm}$
The rate of decrease of amount of water in a draining tank	V = volume t = time	$\frac{dV}{dt}$	V and t	$\frac{m^3}{\min}$

- In the last case, what's missing? w.r.t 2nd "variable" assumes it is time.
- Solving a rate problem is very, very similar to solving max/min prob.
 - 1. need what rate? (no second variable assume time)
 - 2. find a formula.
 - 3. formula must be in terms of one variable only, if not a relationship between the variables by other info. From question.
 - 4. find the rate.
 - 5. substitute given value of second variable, include units
 - 6. answer all questions. If rate is positive, it is increasing, if the rate is negative, it is decreasing.

Example 1: A spherical balloon is being inflated. Find the rate of increase of volume with respect to the radius when the radius is 10cm.

Solution: 1. $\frac{dV}{dr}$ 2. $V = \frac{4}{3}\pi r^3$ 3. \checkmark 4. $\frac{dV}{dr} = 4\pi r^2$ 5. when r = 10 cm $\frac{dV}{dr} = 4\pi (10)^2 = 400\pi \ cm^3 / cm$ 6. volume of the sphere is increasing at a rate of $400\pi \ cm^3 / cm$.

Example 2: The amount of water in a tank (*A* litres) at any time (seconds) is given by $A = \frac{3}{t}$. Find the rate of change of *A* when t = 5s.

Solution: 1. need $\frac{dA}{dt}$ 2. $A = \frac{3}{t}$ 3. \checkmark $A = 3t^{-1}$ 4. $\frac{dA}{dt} = -3t^{-2}$ $\frac{dA}{dt} = \frac{-3}{t^2}$ 5. when t = 5 $\frac{dA}{dt} = \frac{-3}{5^2} = \frac{-3}{25} l/s$ 6. A is changing at a rate of $\frac{-3}{25} l/s$, when t = 5OR A is decreasing at a rate of $\frac{3}{25} l/s$, when t = 5 **Example 3:** A balloon develops a microscopic leak. It's volume $V(cm^3)$ at time, t(s) is:

$$V = 600 - 10t - \frac{t^2}{100}, t > 0$$

- (i) At what rate is the volume changing when t = 10 seconds ?
- (ii) What is the average rate of change of volume in the first 10 seconds?
- (iii) What is the average rate of change of volume in the time interval from t = 10 to t = 20 seconds?

Solution:

(i) need
$$\frac{dV}{dt}$$
 at $t = 10$
 $\frac{dV}{dt} = -10 - \frac{2t}{100} = -10 - \frac{t}{50}$
 $at t = 10, \quad \frac{dV}{dt} = -10 - \frac{10}{50} = -10.2 \ cm^3 / s$
i.e. the volume is decreasing at a rate of 10.2 $\ cm^3 / s$.
(ii) average rate of change of V: $\frac{V_2 - V_1}{t_2 - t_1}$
 $t_1 = 0, V_1 = 600$ and $t_2 = 10, V_2 = 499$
 $A.R.O.C = \frac{499 - 600}{10 - 0} = \frac{-101}{10} = -10.1 \ cm^3 / s$
The volume is decreasing at an average rate of 10.1 $\ cm^3 / s$.
(iii) average rate of change of V: $\frac{V_2 - V_1}{t_2 - t_1}$

 $t_1 = 10, V_1 = 499$ and $t_2 = 20, V_2 = 396$ $A.R.O.C = \frac{396 - 499}{20 - 10} = \frac{-103}{10} = -10.3 \text{ cm}^3 / \text{s}$

The volume is decreasing at an average rate of 10.3 cm^3/s .

- Part (i) above is an INSTANTANEOUS rate of change,
- Part (ii) & (iii) is an AVERAGE rate of change, i.e. and average of a number of instantaneous rates.

Particular Case

	Symbol	Units	Definition
Displacement	x, x(t), s(t), d	m, km,	The distance
			from a fixed
			point O
Velocity	dx ds	m/s, ms ⁻¹ ,	The rate of
	$v, \frac{dx}{dt}, \frac{ds}{dt}$	km/h,	change of
			displacement
Acceleration	$dv d^2x$	m/s^2 , ms^{-2} ,	The rate of
	$a, \frac{d}{dt}, \frac{d}{dt^2}$	km/h ²	change of
	ui ui		velocity

Displacement - Velocity - Acceleration

• Original displacement/velocity/acceleration occurs at t = 0

NOTE: If you were asked to find the average rate of velocity, it would be done as an average rate of change (i.e. $\frac{x_2 - x_1}{t_2 - t_1}$) using the displacement values not the velocity values. (If the velocity values

were used then you get the average acceleration!)

• **Ex10B** 1, 2, 4, 8, 10, 12, 13

Finding the Stationary Points of a Curve

Example 1: Sketch the graph of f(x) = (x+1)(x-2)(x-3) and determine the coordinates of all turning points (2 d.p.).

- 3 Type of Stationary Points:
 - Local Minimum
 - Local Maximum;
 - Point of Inflection.

Example 2: Using the above example, determine the *nature* of the Turning Points.

Solution:

x	0	~0.13	1	~2.54	3
f'(x)	1	0	-4	0	4
Slope	/	-	\	-	/
Nature of T.P		Local		Local	
		Maximum		Minimum	

- Consider the 3 graphs: $y = x^3$ $y = x^3 x$ $y = x^3 + x$
- Graphs similar but different number of stationary points.
- **Ex10C** 1 LHS, 2, 3, 5, 7, 10;
- **Ex10D** 1 cef, 2 adf, 4, 10, 12, 13, 17, 18, 22, 24, 25, 26

NOTE: 2^{nd} derivatives can be used, f''(x) < = Max, f''(x) > 0 = Min, f''(x) = 0 = inconclusive e.g. from above f''(x) = 6x - 8, f''(0) = -8, f''(0.13) = -ve, f''(x) = -2 and f''(3) = 10

Maxima/Minima Problems

Solving a maximum/minimum problem

SETP 1: Need to Maximise/minimise what? Call it "A"

<u>STEP 2</u>: Write the formula for $A = \dots$, making up <u>variables</u> where necessary, maybe a diagram could help.

<u>STEP 3:</u> Can you write another equation?

A = must be written as $A = \dots$ (with **only 1 variable** on the Right Hand Side).

<u>STEP 4</u>: Differentiate A = (i.e. $\frac{dA}{dx}$) and equate to zero, $\frac{dA}{dx} = 0$ and solve for x.

<u>STEP 5:</u> Test for the type of stationary point obtained.

Х			
dA			
\overline{dx}			

Are any answers impossible (i.e. a negative length)

<u>STEP 6</u>: Answer the question in words.

Example 1: Four square corners are removed from a sheet of card of dimensions 21cm by 30 cm. The sheet is folded to form an open rectangular container. Find the dimensions (to 1 d.p.), such that the total volume of the container is a maximum.

Solution: (using the 6 steps from the photocopy sheet).

1. Need to maximise the volume of the container, V.

3. Right Hand side has 3 variables (must be in terms of only 1 variable)

L = 30 - 2HW = 21 - 2H V = (30 - 2H)(21 - 2H)H 4. Maximise \rightarrow let the derivative = 0 i.e. $\frac{dy}{dy} = 0$.

Expand V = V = $(630 - 60H - 42H + 4H^2)H$ V = $(630 - 102H + 4H^2)H$ V = $630H - 102H^2 + 4H^3$ $\frac{dV}{dH} = 630 - 204H + 12H^2$ $6(105 - 34H + 2H^2) = 0$ $2H^2 - 34H + 105 = 0$ Quad. Formula... $H = \frac{17 \pm \sqrt{79}}{2}, H = 4.1, H = 12.9$

5.

(a) V = (30 - 2H)(21 - 2H)HMust ignore H = 12.9 why? (hint: what is the implied domain of H?) (b) H = 4.1 cm Η 4 4.1 5 6 0 -90 dVdH/ _ Therefore a local maximum W = 21 - 2HL = 30 - 2H $L = 30 - 2\left(\frac{17 - \sqrt{79}}{2}\right)W = 21 - 2\left(\frac{17 - \sqrt{79}}{2}\right)$ 6. L = 21.9 cmW = 12.9 cmThe maximum volume is obtained with the dimensions: H = 4.1 cmL = 21.9 cmW = 12.9 cm&

- The maximum/minimum value of a function DOES NOT NECESSARILY OCCUR AT A TURNING POINT. It depends on the feasible Domain caused by the Physical constraints.
- **Ex10F** 1, 2, 3, 4, 6, 7, 12, 14, 16, 17 **Worksheet**

Absolute Maximum/Minimum Problems

Example: Let *A* be the function that models the total enclosed area when a 100 cm piece of wire is cut into two pieces, where one piece is used to form the perimeter of a square, and the other piece is used to form the circumference of a circle.

(a) Show that A can be modelled by, $A: [0,100] \rightarrow R, A(x) = \frac{x^2}{16} + \frac{(100-x)^2}{4\pi}$, where x

cm is the length of the piece of wire used to form the perimeter of the square.

- (b) For what values of *x*, is *A* is a maximum and a minimum?
- (c) What is the minimum area?

Solution:

Calculator use: $fmax(a(x), x) \mid 0 \le x \le 100$

Families of functions

Example 1: Consider the family of functions of the form $f(x) = (x-a)^2(x-b)$, where *a* and *b* are positive constants with b > a.

- **a** Find the derivative of f(x) with respect to x.
- **b** Find the coordinates of the stationary points of the graph of y = f(x).
- **c** Show that the stationary point at (*a*, 0) is always a local minimum.
- **d** Find the values of *a* and *b* if the stationary points occur where x = 3 and x = 4.

Solution:

b

С

a
$$f'(x) = 2 \times 1 \times (x-a) \times (x-b) + (x-a)^2 \times 1 = (x-a)(2(x-b) + (x-a)) = (x-a)(3x-2b-a)$$

$$f'(x) = (x-a)(3x-2b-a) = 0 \Rightarrow x = a, x = \frac{a+2b}{3}$$
$$f(a) = 0 \Rightarrow (a,0)$$
$$f\left(\frac{a+2b}{3}\right) = \frac{4(a-b)^3}{27} \Rightarrow \left(\frac{a+2b}{3}, \frac{4(a-b)^3}{27}\right)$$

look at graph,
$$x < a$$
, $f'(x) > 0$, and if $a < x < \frac{a+2b}{3}$, then $f'(x) < 0$

d Since
$$a < b$$
, we must have $a = 3$ and $\frac{a+2b}{3} = 4 \Longrightarrow b = \frac{9}{2}$

13 14 15 + Do	RAD 🖑 🔀	1 13 14 15 1		4 14 15 16	> *Dec.ep	PAD-C
$f(x) = (x-a)^2 (x-b)$	Done	df(x)	(x-a) $(3 x-a-2 b) =$	8 = 3	6.67 Î	
$df(x) - \frac{d}{dx}(f(x))$	Done	solve(df(x)=0,x)	$x = \frac{a+2}{3} \text{ or } x = a$	5 41. 5 41. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$f_1(x) = f(x)$
atf(x)	(x-a) (3 x-a-2 b)	f(a)	0	-10	\rightarrow	/
solve(df(x)=0,x)	$x = \frac{a+2}{3} \text{ or } x = a$	$\left(\frac{a+2}{3}\right)$	$\frac{4(a-b)^3}{27}$		ŧ	
r(a)	0 ~				-6.67	

Example 2: The graph of $y = x^3 - 3x^2$, is translated by *a* units in the positive direction of the *x*-axis and *b* units in the positive direction of the *y*-axis (where *a* and *b* are positive constants).

a Find the coordinates of the turning points of the graph $y = x^3 - 3x^2$.

b Find the coordinates of the stationary points of its image.

Solution:

$$\frac{dy}{dx} = 3x^2 - 6x \implies 3x^2 - 6x = 0 \implies 3x(x-2) = 0 \implies x = 0, x = 2$$

$$x = 0, y = 0 \implies (0,0)$$

$$x = 2, y - 4 \implies (2,-4)$$

b The turning points of the image are: (a, b) and (a + 2, b - 4).

15 16 21 > *Dac-	PAD 📢 🗟	15 16 21 > Doc~	7 PAG 🕼
$f(x) = x^3 - 3 \cdot x^2$	Done	$df(x) = \frac{a}{dx}(f(x))$	Long .
f(x-a)+b	0.00000000	af(x)	3·x ² -6·x
x^{3} +(-3 a-3) x^{2} +3 a (a+2		solve(df(x)=0,x)	x=0 or x=2
$df(x) = \frac{d}{dx}(f(x))$	Done	r(o)	0
df(x)	3 x ² -6 x	f(2)	-4
. (.())	5 X -6 X	1	
15 16 21 > Doc-	PAD 📢 🐹	15 16 21 > Doc.	
f(2) g(x) =f(x-a)+b	-4 ≏ Done	$\frac{d}{dx}(g(x)) = 3 x^2 - 6$	(a+1) x+3 a (a+2)
	+1) x+3 a (a+2)	$solve(3 \cdot x^2 - 6 \cdot (a+1) x+$	(a+2)=0,x x=a or x=a+2
solve(3 x ² -6 (a+1) x+3 a	(a+2)=0,x)	g(a)	b
	x=a or x=a+2	g(a+2)	<i>b</i> -4
		1	

• **Ex10G** 1, 2, 3, 5, 7, 9

Past Exam Questions 2008 Exam 1

y cu ± em The volume of the brack is 1000 cm³ a. Find an expression for y in terms of x.

A plastic brick is made in the shape of a right trangular prism. The trangular end is an equilateral triangle with side length x cm and the length of the brick is y cm.

Show that the total surface area, A cm², of the brick is given by b. $A = \frac{4000\sqrt{3}}{4000\sqrt{3}} + \frac{\sqrt{3}x^2}{4000}$

c. Find the value of x for which the brick has minimum total surface area. (You do not have to find this

2008 Exam 2

Question 22 The graph of the function f with domain [0, 6] is shown below.

Which one of the following is not true?

- A. The function is not continuous at x = 2 and z = 4.
- B. The function exists for all values of x between 0 and 6.
- C. f(x) = 0 for x = 2 and x = 5.
- D. The function is positive for x ∈ [0, 5).
 E. The gradient of the function is not defined at x = 4.

Question 3

Taumania Jones is in the jungle, digging for gold. He finds the gold at X which is 3 km from a point A Point A is on a straight beach.

Taumania's camp is st Y which is 3 km from a point B. Point B is also on the straight beach. AB = 18 km and AM = NB = x km and AX = BY = 3 km.

While he is digging up the gold, Taunana is bitten by a snake which injects toxin into his blood. After he is tration of the toxin in his bloodstream increases over time according to the equation itten, the concen

$y = 50 \log_2(1 + 2t)$

where y is the concentration, and t is the time in hours after the make bites him.

The toxin will kill him if its concentration reaches 100.

a. Find the time, to the nearest minute, that Tasmania has to find an antidote (that is, a cure for the toxin).

Taumania has an antidote to the toxin at his camp. He can run through the jungle at 5 km/h and he can run along Question 4 The graph of $f: (-\pi, \pi) \cup (\pi, 3\pi) \rightarrow \mathbb{R}, f(x) = \tan\left(\frac{\pi}{2}\right)$ is shown below. the beach at 13 km/h. b. Show that he will not get the antidote in time if he runs directly to his camp through the jungle. I mink In order to get the antidote. Taumania runs through the jongle to M on the beach, runs along the beach to N and then runs through the jungle to the camp at T. M is x km from A and N is x km from B. (See diagram.) 31 31 c. Show that the time taken to reach the camp. Thours, is given by $T = 2\left(\frac{\sqrt{9+x^2}}{5} + \frac{9-x}{13}\right)$ a. L Find $f'\left(\frac{\pi}{2}\right)$ 2 marks d. Find the value of x which allows Taumania to get to his camp in the minimum time. 2 mades ii. Find the equation of the assumal to the graph of y = f(x) at the point where $x = \frac{\pi}{2}$ e. Show that he gets to his camp in time to get the antidote. iii. Sketch the graph of this normal on the axes above. Give the exact axis intercepts. 1 mark At his camp, Tasmania Jones takes a capsule containing 16 units of antidote to the toxin. After taking the capsule the quantity of antidote in his body decreases over time. At exactly the same time on successive days, he takes another capsule containing 16 units of antidote and again the quantity of antidote decreases in his body. 1 + 2 + 3 = 6 marks The graph of the quantity of minidote z units in his body at time d days after taking the first capsule looks like this. Each section of the curve has exactly the same shape as curve ABb. Find the exact values of $y \in (-\pi, \pi) \cup (\pi, 3\pi)$ mch that $f'(x) = f'\left(\frac{\pi}{2}\right)$ c. 2 marks Let g(x) = f(x - a). A D. e. Find the exact value of a a (-1, 1) such that g(1) = 1. - 8 + 4 0 Ŧ The equation of the curve dB is $z = \frac{16}{d+1}$ 2 marks f. Write down the coordinates of the points A and C Let $h: (-\pi, \pi) \cup (\pi, 3\pi) \rightarrow R$, $h(\mathbf{x}) = \min\left\{\frac{\pi}{2}\right\} + \tan\left\{\frac{\pi}{2}\right\} + 2$. d. i. Find W(r). 2 marks g. Find the equation of the curve CD. ii. Solve the equation h'(x) = 0 for $x \in (-\pi, \pi) \cup (\pi, 3\pi)$. (Give exact values.) Sketch the graph of y = h(r) on the soes below ۰. Give the searct coordinates of any stationary pearst-2 martes Label each asymptote with in equation.
Give the exact value of the p-intescept. Taunania will no longer be affected by the make toxin when he first has 50 units of the antidote in his body. Assuming he takes a captule at the same time each day, on how many days does he need to take a captule to that he will no longer be affected by the make toxin? ١. 1 mæk Total 13 marks

2 marks Total 15 marks

2009 Exam 1	-
Question 1 a. Differentiate xlog_(x) with respect to x.	$\overline{\varrho}$
2 marks	valley
b. For $f(x) = \frac{\cos(x)}{2x+2}$ find $f'(x)$.	A tran is traveling at a constant speed of w km/h along a straight level track from M towards Q. The train will travel along a section of track MNPQ Section MN passes along a bridge over a valley. Section NP passes through a tomel in a mountain. Section PQ is 6.2 km long. From M to P, the curve of the valley and the mountain, describy below and above the train track, is modelled by the graph of $y = \frac{1}{200} (ax^2 + bx^2 + c)$ where $a_i b$ and c are real numbers. All measurements are in follometres. a. The curve defined from M to P passes through N(2, 0). The gradient of the curve at N is -0.06 and the
2009 Exam 2	curve has a transing point at x = 4. i. From this information write down three simultaneous equations in a, b and c.
Question 7 For y = e ^{1x} cos (3x) the rate of change of y with respect to x when x = 0 is A. 0. B. 2 C. 3. D. -6 E. -1	ii. Hence show that a = 1, b = -6 and c = 16.
Question 8 For the function $f: R \to R_c f(x) = (x + 5)^2 (x - 1)$, the subset of R for which the gradient of f is negative is A. $(-\infty, 1)$ B. $(-5, 1)$ C. $(-5, -1)$ D. $(-\infty, -5)$ E. $(-5, 0)$ Question 9	 3 + 2 = 5 marks b. Find, giving exact values i. the coordinates of M and P
The tangent at the point (1, 5) on the graph of the curve $y = f(x)$ has equation $y = 3 + 2z$. The tangent at the point (3, 6) on the curve $y = f(x - 2) + 3$ has equation A : $y = 2x - 4$ B : $y = z + 5$ C : $y = -2x + 14$ D : $y = 2x + 4$ E : $y = 2z + 2$ Outertion 15	ii. the length of the tunnel
For $y = \sqrt{1 - f(x)}$, $\frac{dy}{dx}$ in equal to A. $\frac{2f'(x)}{\sqrt{1 - f(x)}}$	iii. the maximum depth of the valley below the train track.
B. $\frac{-1}{2\sqrt{1-f'(x)}}$ C. $\frac{1}{2}\sqrt{1-f'(x)}$ D. $\frac{3}{20-f'(x))}$ E. $\frac{-f'(x)}{2\sqrt{1-f'(x)}}$	The driver uses a large rock on the track at a point Q_i 6.2 km from P . The driver puts on the brakes at the instant that the front of the tunnel course out of the tunnel at P . From its initial speed of w kmb, the train slows down from point P so that its speed v km/h is given by $v = k \log_{\theta} \left\{ \frac{(d+1)}{7} \right\}$, where d km is the distance of the front of the train from P and k is a real constant.
Question 21 A cubic function has the rule $y = f(x)$. The graph of the derivative function f^+ crosses the x-axis at (2, 0) and (-3, 0). The maximum value of the derivative function is 10 The value of x for which the graph of $y = f(x)$ has a local maximum is A. -2 B. 2	c. Find the value of k in terms of w.
C3 D. 3 E ¹ / ₂	d. If $v = \frac{120 \log_{\theta}(2)}{\log_{\theta}(7)}$ when $d = 2.5$, find the value of w .
	2 marks e. Find the exact distance from the front of the train to the large rock when the train finally stops

Question 2

2010 Exam 1

2010 Exam 2

A function g with	• $g'(x) = x^2 - 2x$
	 the graph of g(x) passes through the point (1, 0)
g(x) is equal to	
A. 2x-2	
B. $\frac{x^3}{3} - x^2$	
C. $\frac{x^3}{3} - x^2 + \frac{1}{3}$	
D. $x^2 - 2x + 2$	
E. $3x^3 - x^2 - 1$	

Question 16

The gradient of the function $f: R \to R, f(x) = \frac{5x}{x^2 + 3}$ is negative for

A. $-\sqrt{3} < x < \sqrt{3}$

B, x > 3

 $\mathbf{C}, \quad x \in R$

 $\mathbf{D}, \quad x < -\sqrt{3} \quad \text{and} \quad x > \sqrt{3}$

E. x<0

Question 17

The function f is differentiable for all $x \in R$ and satisfies the following conditions.

- f'(x) ≤ 0 where x ≤ 2
- f'(x) = 0 where x = 2
- f'(x) = 0 where x = 4
- *f*ⁿ(x) ≥ 0 where 2 ≤ x ≤ 4
- $f'(x) \ge 0$ where $x \ge 4$

Which one of the following is true?

- A. The graph of f has a local maximum point where x = 4.
- B. The graph of f has a stationary point of inflection where x = 4.
- C. The graph of f has a local maximum point where x = 2.
- **D**. The graph of f has a local minimum point where x = 4.
- E. The graph of f has a stationary point of inflection where x = 2.

Question 4

Consider the function $f: R \rightarrow R, f(x) = \frac{1}{x^2}(2x-1)^3(6-3x)+1$.

a. Find the 1-coordinate of each of the stationary points of f and state the nature of each of these stationary points.

					14		
4	٤.	п	ы	넏	k	3	
				é			

In the following, f is the function $f: R \rightarrow R, f(y) = \frac{1}{2Y}(ax - 1)^{2}(b - 3x) + 1$ where a and \bar{b} are real constants

b. Write down, in terms of a and b, the possible values of x for which (x, f(x)) is a stationary point of f

1 mark

t. For what value of σ does f have no stationary points?

3 marks

đ.	Find a in terms of b if f has one stationary point.		Question 10 The figure sh EC with AB
			Let ZCBD -
e.	What is the maximum number of stationary points that f can have?	2 marks	
		1 mark	a. Find B
			b. Find th
ť.	Assume that there is a stationary point at $(1,1)$ and another stationary point (p,p) where $p\neq 1$ Find the value of p		
	Tota	3 marks 14 marks	e. Find $\frac{dL}{d\theta}$
20	11 Exam 1		
	ention 1 Differentiate $\sqrt{4-x}$ with respect to x.		
		1 mark	d. Find the
b.	If $g(x) = x^2 \sin(2x)$, find $g'\left(\frac{\pi}{6}\right)$.		
			2011
			Question 4 The deriva
		2 marks	A. $\frac{f'(x)}{f(x)}$ B. $2\frac{f'(x)}{f(x)}$
			C. $\frac{f'(x)}{2f(x)}$
			 D. log_e(2) E. 2log_e(2)
			Question 17 The normal s
			 A. 4x = y B. 4y + x x
		I I	C 22-1

201

hown represents a write frame where \mathcal{ABCE} is a convex quisdrilateral. The point D is on line segment = ED = 2 cm and BC = a cm, where a is a positive constant.

 $\angle BAE = \angle CEA = \frac{\pi}{2}$

 θ where $0 < \theta < \frac{\pi}{2}$.

D and CD in terms of a and θ .

2 marks

2 marks

e length, L cm, of the wire in the frame, including length BD_i in terms of a and θ_i

, and hence show that $\frac{dL}{d\theta} = 0$ when BD = 2CD.

maximum value of L if $a = 3\sqrt{5}$.

Exam 2

tive of $\log_{\theta}(2f(x))$ with respect to x is

- ()
- ò
- y''(x))
- (2f'(x))

to the curve with equation $y = x^{\frac{2}{2}} + x$ at the point (4, 12) is parallel to the straight line with equation

- -7
- $C, \quad y = \frac{x}{4} + 1$
- $\mathbf{D}, \quad t=4y=-5$
- E. 4y + 4x = 30

a. If the detailmation plant is at the point (w, n) thow that the length, Z kolometres, of the straight pipeline that carries the water from the detailmation plant to the village is given by

 $L = \sqrt{m^4 - 3m^2 + 4}$

b. If the desalination plant is built at the point on the river that is closest to the village	ii. hence find the coordinates of the point where Taumania should reach the river if he is to get to the
 find ^{dL}/_{dm} and hence find the coordinates of the desalination plant 	dealization plant in the minimum time
	<u>2</u>
	<u>8</u>
	1 + 2 = 3 marka
	e. On one particular day, the value of k is such that Taumania should run directly from his camp to the point (1, 0) on the raver to get to the desalination plant in the minimum time. Find the value of k on that particular
	day.
	S. S
	4
	3
ii. find the length, in kilometres, of the pipeline from the desalination plant to the village.	3
	R
	2 marks
	 Find the values of k for which Taumania should run directly from his camp towards the desalimation plant to each it in the minimum time.
3 + 2 = 5 marks	
	2012 Exam 1
The desalization plant is actually built at $\left(\frac{\sqrt{7}}{2}, \frac{3}{4}\right)$	Question 1
If the desalination plant stops working, Tasmania needs to get to the plant in the minimum time.	a. If $y = (x^2 - 5x)^4$, find $\frac{dy}{dx}$.
Taxmania rum in a straight line from his camp to a point (x, y) on the river bank where $x \le \frac{q/T}{2}$. He then swims	dx
up the river to the detailination plant.	· · · · · · · · · · · · · · · · · · ·
plant is proportional to the difference between the y-coordinates of the desaination plant and the point where he enters the river	
c. Show that the total time taken to get to the detailination plant is given by	
$r = \frac{1}{\sqrt{d}} \sqrt{\frac{1}{d}} \frac{1}{\sqrt{d}} \frac{1}{$	
$T = \frac{1}{2}\sqrt{x^4 - x^2 + 1} + \frac{1}{4}k\left(7 - 4x^2\right)$ hours where k is a positive constant of proportionality.	1 mark
	b. If $f(x) = \frac{x}{\sin(x)}$, find $f'\left(\frac{\pi}{2}\right)$.
<u></u>	
	
	2 marks
3 marks	Question 10
The value of k varies from day to day depending on the weather conditions.	Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{-\alpha x} + 3x$, where α is a positive rational number
4. If $k = \frac{1}{2\sqrt{13}}$	a. L. Find, in terms of m , the x-coordinate of the stationary point of the graph of $y = f(x)$.
i. field $\frac{dT}{d\lambda}$	
2 <u></u>	
	ii. State the values of m such that the r-coordinate of this stationary point is a positive number.
	5
	an a
	2+1=3 marks b. For a particular value of m, the tangent to the graph of y = f(x) at x = -6 parces through the origin.
	 For a particular value of m, the sufficience of particular - for a size of particular on origin. Find this value of m.

2012 Exam 2

Ourstion 1

1+1+1-3 marks

E. $c < \frac{b^2}{3a}$

Which of the following points lies on this tangent? A. (1,-4) B. (3,8) с. (-2, 6) **D**. (1, 8) E (4-4) Operation 17 A graph with role $f(x) = x^3 - 3x^2 + c$, where c is a real manifer, has three distinct x-intercepts The set of all possible values of \boldsymbol{c} is A. R B. R* C. [0,4] D. (0,4) E. (-00, 4) Question I (9 marks) Let $f: R \to R$, $f(s) = \frac{1}{g}(s-1)^2(5-s)$. The point $P\left(1, \frac{d}{2}\right)$ in on the graph of f; as shown below The taugest at P cats the y-axis at 5 and the x-axis at Q $P\left(1, \frac{4}{5}\right)$ 0 a. Write down the desivative f'(z) of f(z). 1 madi 4. Find the equation of the tangent to the graph of f at the point $P\left(1, \frac{4}{n}\right)$. 14 1 mint: ii. Find the coordinates of points Q and S 2 marks c. Find the distance PS and express it in the form $\frac{\sqrt{6}}{2}$, where b and c me positive integers. 2 nucks Question 2 (14 marks) A city is located on a river that must knowle a gospet. The gauge is 10 m across, 40 m high on one side and 30 m high on the other side A bridge is to be built that crosses the river and the gorge A diagram for the design of the bridge is shown below 31(40, 30) The main frame of the bridge has the shape of a parabola. The parabolic frame is modelled by $y \approx 80 - \frac{3}{80}\,x^2\,$ and is connected to concrete path at $\mathcal{S}(40,\,0)$ and $\mathcal{S}(-40,\,0)$ The road across the gorge is modelled by a cubic polynomial function Turd the angle, 0, between the tangent to the parabolic frame and the herizontal at the point A(=40, 0) to the anarest degree. 2 marks

Question 4

Consider the tangent to the graph of $y = x^2$ at the point (2, 4).

regention y-	25.604 16							
 Find the second re 	andrami desersi no poutive atisjer	nts slope : t.	of file ro	nil. Geve	YOUE BEA	wer in fb		1 aurles
_								
The supports parabolic frac	apporting columns g column, APV, is a re-is-a monimum, coordination (a, v) a	t the proof	where t	he vortin	d distais	a listaise) males
	pportug column, s			1				
Find, con MN and J		l places, t	lie valo	e of w m	id dae le	ngibs of	the supporting colour	0) 3 marks
Find the the road i	s coordunates, con neets the paraboli	ect to two Climme of	decum The bin	il places lige	of E au	d F, the	points at which	3 minks
Find the	area of the baaner	(shaded p	rgion), j	giving y	our mea	ier to the	nearest square areto	r. 1 anach
Quentities 5 ()	15 mielss) $(= 2e^{\frac{1}{2}} \cdot 8e^{\frac{-2\pi}{2}}$, wh	am 0 < 1 <	58.7					
	al 3(0) and 3(5)							t mark
a. Th	e matatanan wakite o	é Stocur	alien (- he iv				_
	te the value of c as							2 metri
-		0000.00	200492			1000000		_
	he axes below, ske the minimum poin				r for 0 ≤	i≤5.14	bel the end points	2 motios
	Ť	1	T	ŕ	T	T	1	
	10							
	8						-	
	4	-	-					
	3	t						
	0	L.,	-52	1	4	5	12.0	

	 Find the value of the average rate of change of the function S over the interval [0, log_10]]. 	7 marties
Let?	$(0, 5] \Rightarrow R, V(t) = dt^{\frac{1}{2}} + (10 - d)s^{-\frac{21}{5}}$, where <i>d</i> is a real number and <i>d</i> $\in (0, 10)$.	
h.	If the minimum value of the function occurs when $r = \log_{\theta}(0),$ find the value of d	2 marks
۴.	i. Find the set of possible values of d such that the minimum value of the function occurs when $t = 0$	2 esieko
8.	Find the set of possible values of d such that the minimum value of the function occurs when $t=5$	2 anarka
	2	
1		
	he function <i>V</i> has a local minimum (a, w) , where $0 \le a \le 5$, it can be shown that $\frac{4}{2}d^{\frac{3}{2}}(10-d)^{\frac{1}{2}}$.	
Fe	d the value of k.	2 mark
200		