

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h x+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h \\
& =2 x
\end{aligned}
$$

 Calculus
Name Mili Wain

Average Rate of Change (AROC)

- The average rate of change of y over an interval is equal to $\frac{\text { change in } y}{\text { changein } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f(b)-f(a)}{b-a}$.

Example: Find the average rate of change of the function with rule
 $f(x)=x^{2}-2 x+5$ as x changes from 1 to 5 .
$f(x)=x^{2}-2 x+5$
$f(1)=(1)^{2}-2(1)+5=4 \quad \& \quad f(5)=(5)^{2}-2(5)+5=20$
$A R O C=\frac{20-4}{5-1}=\frac{16}{4}=4$

Instantaneous Rate of Change $\& 1^{\text {st }}$ Principles

- If we look at the graph on the right, $y=x^{2}$ and wanted to calculate the rate of change at Point P, we then calculate the gradient between P and Q.
- If we bring the point Q closer and closer to P then the gradient will be approaching the value of the tangent at P.
- $m(P Q)=\frac{(a+h)^{2}-a^{2}}{a+h-a}=\frac{a^{2}+2 a h+h^{2}-a^{2}}{h}=\frac{2 a h+h^{2}}{h}=2 a+h$
- If Q approaches P then $h \rightarrow 0$, the gradient approaches $2 a$.

- The instantaneous rate of change of a function f at point P on a graph of $y=f(x)$ is equal to the gradient of the tangent to the graph at P. So, to find the instantaneous rate of change at point P, we evaluate the derivative of the function at P.
- The instantaneous rate of change of f at $x=a$ is $f^{\prime}(a)$.

Example: Find $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ for
(i)

$$
\begin{aligned}
& f(x)=3 x^{2}+2 x+2 \\
& \frac{f(x+h)-f(x)}{h}= \\
& \frac{3(x+h)^{2}+2(x+h)+2-\left(3 x^{2}+2 x+2\right)}{h} \\
& =\frac{3 x^{2}+6 x h+3 h^{2}+2 x+2 h+2-3 x^{2}-2 x-2}{h} \\
& =\frac{6 x h+3 h^{2}+2 h}{h} \\
& =6 x+3 h+2 \Rightarrow \lim _{h \rightarrow 0}(6 x+3 h+2)=6 x+2
\end{aligned}
$$

$$
\text { (ii) } \begin{aligned}
& \frac{f(x)=2-x^{3}}{} \begin{array}{l}
\frac{f(x+h)-f(x)}{h}= \\
=\frac{2-(x+h)^{3}-\left(2-x^{3)}\right.}{h} \\
=\frac{-3 x^{2} h-3 x h^{2}-h^{3}}{h} \\
=-3 x^{2}-3 x h-h^{2} \\
\Rightarrow \lim _{h \rightarrow 0}\left(-3 x^{2}-3 x h-h^{2}\right)=-3 x^{2}
\end{array}
\end{aligned}
$$

- Ex9A 1, 2, 3, 4 LHS, 8 LHS

The derivative of x^{n}

- If $f(x)=x^{n}$ then $f^{\prime}(x)=n x^{n-1} \quad$ and if $f(x)=a x^{n}$ then $f^{\prime}(x)=n a x^{n-1}$.

The derivative of a constant

- If $f(x)=c$ then $f^{\prime}(x)=0$.

Examples: Find the derivative of the following:

1. $y=3 x^{6}-4 x^{3}$
2. $f(x)=3 x\left(2 x^{2}-7\right)$
3. $f=2 g^{2}-5$
4. $h=\frac{6 a^{2}+7 a^{4}}{a}$
5. $y=x+\frac{1}{x}+\frac{6}{x^{3}}$

- Remember to always to subtract 1 from the power.
- Be careful with + and - signs.

Solutions

1. $\frac{d y}{d x}=18 x^{2}-12 x^{2}$
2. Expand first: $f(x)=6 x^{3}-21 x$ therefore $f^{\prime}(x)=18 x^{2}-21$
3. $\frac{d f}{d g}=4 g$
4. Simplify first: $h=6 a+7 a^{3}$
therefore $\frac{d h}{d a}=6+21 a^{3}$
5. $y=x+x^{-1}+6 x^{-3}$
$\frac{d y}{d x}=1-x^{-2}-18 x^{-4} \quad$ or $\quad \frac{d y}{d x}=1-\frac{1}{x^{2}}-\frac{18}{x^{4}}$

- Ex9B 1, 2, 4, 5, 6

The Gradient of a Curve

- The gradient of a curve is not constant.
- The gradient of a curve at a certain point is equal to the gradient of the tangent to the curve at that point.
- A tangent is a line that touches another curve at one point only (i.e.it does not cross it).

- The line T_{1} is a tangent to the curve at point a.
- The line T_{2} is a tangent to the curve at point b.
- Consider $y=4 x^{3}-8 x^{2}$ and its derivative $\frac{d y}{d x}=12 x^{2}-16 x$
- What does all this mean?
- $y=4 x^{3}-8 x^{2}$ is a formula that gives the y-value of the curve at any point x.
- $\frac{d y}{d x}=12 x^{2}-16 x$ is a formula that gives the gradient of the curve at any point x.

Example 1: What is the gradient of the curve $y=4 x^{3}-8 x^{2}$ at $x=-2$?

Solution:

$\frac{d y}{d x}=12 x^{2}-16 x$
at $x=-2$
$\frac{d y}{d x}=12(-2)^{2}-16(-2)$
$\frac{d y}{d x}=80$

Example 2: What are the co-ordinates of the point(s) of the curve $y=4 x^{3}-8 x^{2}$, where the gradient is -4 ?
Solution:

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=-4 \\
& \therefore-4=12 x^{2}-16 x \\
& 0=12 x^{2}-16 x+4 \\
& 0=4(3 x-1)(x-1) \\
& \therefore x=\frac{1}{3} \quad \text { or } \quad x=1 \\
& \text { When } x=\frac{1}{3}, y=4\left(\frac{1}{3}\right)^{3}-8\left(\frac{1}{3}\right)^{2}=-\frac{20}{27} \quad \therefore\left(\frac{1}{3},-\frac{20}{27}\right) \\
& \text { When } x=1, y=4(1)^{3}-8(1)^{2}=-4 \quad \therefore(1,-4)
\end{aligned}
$$

- $\mathbf{E x} 9 \mathrm{~B} 7,11,12,13,14,16,17 \mathbf{E x} 9 \mathrm{C} 4,5,6,8,10$

Notes: $\left\{x: h^{\prime}(x)>0\right\}$
Means: $\quad\{x: \quad\} \quad$ Find the x-values where $h^{\text {‘ }}(x) \quad$ The gradient function, $>0 \quad$ that is positive
$m=\tan \theta$

$$
\tan \theta=\frac{o p p}{a d j}=\frac{O}{A}
$$

Strictly increasing and strictly decreasing functions

A function f is said to be strictly increasing when $a<b$ implies $f(a)<f(b)$ for all a and b in its domain.
The definition does not require f to be differentiable, or to have a non-zero derivative, for all elements of the domain.
If a function is strictly increasing, then it is a one-to-one function and has an inverse that is also strictly increasing.

- If $f^{\prime}(x)>0$ for all \boldsymbol{x} in the interval then the function is strictly increasing.
- If $f^{\prime}(x)<0$ for all \boldsymbol{x} in the interval then the function is strictly decreasing.

Strictly Increasing

Example 1: The function $f: R \rightarrow R, f(x)=x^{3}$ is strictly increasing with zero gradient at the origin.

The inverse function $f^{-1}: R \rightarrow R, f^{-1}(x)=x^{\frac{1}{3}}$, is also strictly increasing, with a vertical tangent of undefined gradient at the origin.

Example 2: The hybrid function g with domain $[0, \infty)$ and rule: $g(x)=\left\{\begin{array}{cr}x^{2} & 0 \leq x \leq 2 \\ 2 x & x>2\end{array} \quad\right.$ is strictly increasing, and is not differentiable at $x=2$.

Example 3: Consider
$h: R \rightarrow R, h(x)=|x|-x^{3}$
H is not strictly increasing,
But is strictly increasing over the interval $\left[0, \frac{1}{\sqrt{3}}\right]$.

Strictly Decreasing

A function f is said to be strictly decreasing when $a<b$ implies $f(a)>f(b)$ for all a and b in its domain.
A function is said to be strictly decreasing over an interval when $a<b$ implies $f(a)>f(b)$ for all a and b in its interval.

Example 4: The function $f: R \rightarrow R, f(x)=\frac{1}{e^{x}+1}$
The function is strictly decreasing over R.

Example 5: The function $g: R \rightarrow R, g(x)=\cos (x)$ g is not strictly decreasing.

But g is strictly decreasing over the interval $[0, \pi]$. (also $[-2 \pi,-\pi]$ and $[2 \pi, 3 \pi]$ etc.

- Ex9B 18, 19, 20, 21,

Sketching the Gradient Function

GRAPH OF THE ORIGINAL FUNCTION	GRAPH OF THE GRADIENT FUNCTION
Where the gradient is flat (i.e at all stationary points)	Will cross the x-axis
Where there is a positive gradient (i.e. slopes	Will be above the x-axis
Where there is a negative gradient (i.e. slopes ,	Will be below the x-axis
Where the gradient gets flatter	Gets closer to x-axis
Where the gradient gets steeper	Gets further away from x-axis
At the steepest part of each ‘section' of the graph	Will have a 'peak'

Example 1: Sketching the Gradient Function $\quad y=4 x^{2}-x^{4}$

Example 2: Sketch the gradient graph of:

Solution:

Example 3: Sketch the gradient function of:

Solution:

- Ex9D 1 acdefhi, 2 acdegi, 3, 5, 6, 7

Chain Rule - The derivative of (function) ${ }^{\text {n }}$

(The function in a function rule or Composite Function rule).
Example 1: Find the derivative of $y=-3\left(14 x^{2}-x\right)^{4}$.

Solution:

In words: find the derivative of "the thing" as a whole, then multiply it by the derivative of the "inside".
$\frac{d y}{d x}=-12\left(14 x^{2}-x\right)^{3}(28 x-1)$
$\frac{d y}{d x}=-12[x(14 x-1)]^{3}(28 x-1)$
$\frac{d y}{d x}=-12 x^{3}(14 x-1)^{3}(28 x-1)$
In symbols: If $y=(u)^{n}$ where $u=f(x)$, then $\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$
Let $u=14 x^{2}-x, y=-3 u^{4}$
$\frac{d u}{d x}=28 x-1, \quad \frac{d y}{d u}=-12 u^{3}=-12\left(14 x^{2}-x\right)^{3}$
$\therefore \frac{d y}{d x}=-12\left(14 x^{2}-x\right)^{3}(28 x-1)$ etc...
Example 2: Find $f^{\prime}(x)$ if $f(x)=\left(2 x^{4}-3\right)^{18}$.
$f^{\prime}(x)=18\left(2 x^{4}-3\right)^{17}\left(8 x^{3}\right)$
$f^{\prime}(x)=144 x^{3}\left(2 x^{4}-3\right)^{17}$
Example 3: If $y=\sqrt{x^{3}-3}$ then find $\frac{d y}{d x}$.

$y=\left(x^{3}-3\right)^{\frac{1}{2}}$
$\frac{d y}{d x}=\frac{1}{2}\left(x^{3}-3\right)^{-\frac{1}{2}}\left(3 x^{2}\right)$
$\frac{d y}{d x}=\frac{1}{2} \times \frac{1}{\left(x^{3}-3\right)^{\frac{1}{2}}} \times 3 x^{2}$
$\frac{d y}{d x}=\frac{3 x^{2}}{2\left(x^{3}-3\right)^{\frac{1}{2}}}$

- Ex9E 1, 2, 3, 5

$\frac{d f(g(x))}{d x}=g^{\prime}(x) \cdot f^{\prime}(g(x))$ Example 4 $\frac{d}{d x}\left(f\left(x^{2}\right)\right)$ $=2 x \cdot f^{\prime}\left(x^{2}\right)$ Example 5 $\frac{d}{d x}\left((f(x))^{3}\right)$ $=3 f^{\prime}(x) \cdot(f(x))^{2}$

Differentiating Rational Powers

Examples: Find the derivative of each of the following with respect to x.
(a) $\begin{aligned} y & =\frac{2}{\sqrt[5]{x}}+3 x^{\frac{2}{7}} \\ y & =2 x^{-\frac{1}{5}}+3 x^{\frac{2}{7}} \\ \frac{d y}{d x} & =2\left(-\frac{1}{5} x^{-\frac{6}{5}}\right)+3\left(\frac{2}{7} x^{-\frac{5}{7}}\right) \\ \frac{d y}{d x} & =-\frac{2}{5} x^{-\frac{6}{5}}+\frac{6}{7} x^{-\frac{5}{7}} \\ & o r \\ & =\frac{-2}{5 \sqrt[5]{x^{6}}}+\frac{6}{7 \sqrt[7]{x^{5}}}\end{aligned}$
(b) $\begin{aligned} & f(x)=\sqrt[3]{x^{2}+2 x} \\ & f(x)=\left(x^{2}+2 x\right)^{\frac{1}{3}} \\ & f^{\prime}(x)=\frac{1}{3}\left(x^{2}+2 x\right)^{-\frac{2}{3}} \times(2 x+2) \quad \text { chain rule } \\ & f^{\prime}(x)=\frac{2 x+2}{3 \sqrt[3]{\left(x^{2}+2 x\right)^{2}}}\end{aligned}$

- Ex9F 2, 3,4, 6, 7

- Derivatives of Transcendental functions

The derivative of $e^{k x}$

- In general: If $y=e^{k x}$ then $\frac{d y}{d x}=k e^{k x} . \quad$ If $y=a e^{f(x)}$ then $\frac{d y}{d x}=a f^{\prime}(x) e^{f(x)}$

Example 1: Find the derivatives of:
(i) $y=e^{2 x}$
(ii) $y=e^{-5 x}$
(iii) $y=e^{\left(x^{2}+2 x\right)}$

Solutions:

(i) $\frac{d y}{d x}=2 e^{2 x}$
(ii) $\frac{d y}{d x}=-5 e^{-5 x}$
(iii) $\frac{d y}{d x}=(2 x+2) e^{\left(x^{2}+2 x\right)}$

Example 2: Find $f^{\prime}(x)$ given $f(x)=x^{2} e^{4 x}$.

Solution:

Product Rule:

$$
\begin{aligned}
& f^{\prime}(x)=(2 x)\left(e^{4 x}\right)+(4) e^{4 x}\left(x^{2}\right) \\
& H C F=2 x e^{4 x} \\
& f^{\prime}(x)=2 x e^{4 x}(1+2 x)
\end{aligned}
$$

- $\mathbf{E x 9 G}$ 1, 2, 3, 4, 5, 6

Derivative of $\log _{e} x$

- In general, if $y=\log _{e} x$ then $\frac{d y}{d x}=\frac{1}{x}$
- If $y=\log _{e}(h(x))$ then $\frac{d y}{d x}=\frac{1}{h(x)} \times h^{\prime}(x)=\frac{h^{\prime}(x)}{h(x)}$

$$
y=\log _{e}|x|
$$

- If $y=\left\{\begin{array}{c}\log _{e} x, x>0 \\ \log _{e}(-x), x<0\end{array}\right.$

$$
d y=\left\{\begin{array}{c}
\frac{1}{x}, x>0 \\
\frac{1}{-x} \times-1=\frac{1}{x}, x<0
\end{array}=\frac{1}{x}, \text { for } x \in R \backslash\{0\}\right.
$$

Examples: Find the derivatives of:
(i) $y=\log _{e} 3 x$
(ii) $y=\log _{e}\left(x^{2}+x\right)$
(iii) $y=\log _{e} x^{2}+x$

Solution:

(i) $\frac{d y}{d x}=\frac{1}{3 x} \times 3=\frac{1}{x}$ (note: any rule of the form $y=\log _{e}(k x)$ has a derivative of $\frac{1}{x}$), $x \neq 0$
(ii) $\frac{d y}{d x}=\frac{1}{x^{2}+x} \times(2 x+1)=\frac{2 x+1}{x^{2}+x}, x \neq-1,0$
(iii) $\frac{d y}{d x}=\frac{1}{x^{2}} \times 2 x+1=\frac{2 x}{x^{2}}+1=\frac{2}{x}+1, x \neq 0$

Ex9H 1, 2, 3, 4, 5, 6, 7, 8

- Derivative of the Trigonometric Functions
- If $y=\sin (k x)$ then $\frac{d y}{d x}=k \cos (k x)$
- If $y=\cos (k x)$ then $\frac{d y}{d x}=-k \sin (k x)$
- $y=\tan (k x)$ then $\frac{d y}{d x}=k \sec ^{2}(k x)$ or $\frac{k}{\cos ^{2}(k x)}$

Examples: Find the derivative of the following:
(i) $y=\cos \left(\frac{x}{3}\right)=\cos \left(\frac{1}{3} x\right)$
(ii) $y=\sin \left(x^{3}\right)=$
(iii) $y=\sin ^{3} x=(\sin x)^{3}$
(iv) $y=3 \tan (2 x)$
(v) $y=\cos \left(3 x^{2}+2\right)$

Solution:

(i) $\frac{d y}{d x}=-\frac{1}{3} \sin \left(\frac{x}{3}\right)$
(ii) $\frac{d y}{d x}=3 x^{2} \cos \left(x^{3}\right)$
(iii) $\frac{d y}{d x}=3 \cos x \sin ^{2} x$
(iv) $\frac{d y}{d x}=3 \times 2 \cdot \sec ^{2} 2 x=6 \sec ^{2} 2 x$
(v) $\frac{d y}{d x}=-6 x \sin \left(3 x^{2}+2\right)$

- Ex9I 1, 2, 3, 4, 5, 6

NOTE: Angle MUST be in RADIANS

$\theta^{c}=\frac{\pi}{180} \times \theta^{o}$
e.g.
$\sin \left(x^{o}\right)=\sin \left(\frac{\pi x}{180}\right)$
$\frac{d}{d x}\left(\sin \left(x^{o}\right)\right)=\frac{d}{d x}\left(\sin \left(\frac{\pi x}{180}\right)\right)=\frac{\pi}{180} \cos \left(\frac{\pi x}{180}\right)$ or $\frac{\pi}{180} \cos \left(x^{o}\right)$

The Product Rule - The derivative of the product of two functions

Example 1: Find $\frac{d y}{d x}$ (using the product rule) if $y=3 x^{2}\left(x^{2}-2 x\right)$.

Solution:

In words: The derivative of the first term multiplied by the second term, ADD the derivative of the second term multiplied by the first term.

In symbols: If $y=u \cdot v$ then $\frac{d y}{d x}=v \cdot \frac{d u}{d x}+u \cdot \frac{d v}{d x}$
In the above example,
$u=3 x^{2}$ and $v=x^{2}-2 x$

$$
\frac{d u}{d x}=6 x \text { and } \frac{d v}{d x}=2 x-2 \quad \begin{aligned}
& \frac{d y}{d x}=6 x\left(x^{2}-2 x\right)+(2 x-2)\left(3 x^{2}\right) \\
& \frac{d y}{d x}=6 x^{3}-12 x^{2}+6 x^{3}-6 x^{2} \\
& \frac{d y}{d x}=12 x^{3}-18 x^{2}
\end{aligned}
$$

Example 2: Find $f^{\prime}(x)$ if $f(x)=\sqrt{x}\left(4 x^{3}-12\right)$.

Solution:

$$
\begin{aligned}
& \text { Let } u=\sqrt{x} \quad \text { and } v=4 x^{3}-12 \\
& \frac{d u}{d x}=\frac{1}{2} x^{-\frac{1}{2}} \quad \text { and } \frac{d v}{d x}=12 x^{2} \\
& \frac{d y}{d x}=\frac{1}{2} x^{-\frac{1}{2}}\left(4 x^{3}-12\right)+12 x^{2}\left(x^{\frac{1}{2}}\right) \\
& \frac{d y}{d x}=\frac{4 x^{3}-12}{2 x^{\frac{1}{2}}}+12 x^{\frac{5}{2}} \\
& \frac{d y}{d x}=\frac{4 x^{3}-12+24 x^{3}}{2 x^{\frac{1}{2}}} \\
& \frac{d y}{d x}=\frac{28 x^{3}-12}{2 x^{\frac{1}{2}}}=\frac{2\left(14 x^{3}-6\right)}{2 x^{\frac{1}{2}}}=\frac{14 x^{3}-6}{\sqrt{x}}
\end{aligned}
$$

Let $u=e^{2 x} \quad$ and $v=\sin (2 x+1)$
$\frac{d u}{d x}=2 e^{2 x} \quad$ and $\quad \frac{d v}{d x}=2 \cos (2 x+1)$
$\frac{d y}{d x}=2 e^{2 x} \cdot \sin (2 x+1)+e^{2 x} \cdot 2 \cos (2 x+1)$
$\frac{d y}{d x}=2 e^{2 x}(\sin (2 x+1)+\cos (2 x+1))$

Example 3: Find $f^{\prime}(x)$ if $f(x)=e^{2 x} \sin (2 x+1)$.

Solution:

- Ex9J 1, 2, 3, 4, 5, 6, 7, 8

Quotient Rule - The derivative of the quotient of two functions

- Used when you have a problem in fraction form.

Example 1: If $y=\frac{2 x+4}{3 x-7}$ then find $\frac{d y}{d x}$

Solution:

In words: The derivative of the top term, multiplied by the bottom term, subtract the derivative of the bottom term, multiplied by the top term, all over the bottom term squared.

In symbols: If $y=\frac{u}{v}$ then $\frac{d y}{d x}=\frac{v \cdot \frac{d u}{d x}-u \cdot \frac{d v}{d x}}{v^{2}}$,
In the above example:
$u=2 x+4($ top $) \quad \frac{d u}{d x}=2$
$v=3 x-7($ bottom $) \frac{d v}{d x}=3$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{2(3 x-7)-3(2 x+4)}{(3 x-7)^{2}} \\
& \frac{d y}{d x}=\frac{6 x-14-6 x-12}{(3 x-7)^{2}} \\
& \frac{d y}{d x}=\frac{-26}{(3 x-7)^{2}}
\end{aligned}
$$

Example 2: If $y=\frac{x^{2}-1}{x^{2}+1}$ then find $\frac{d y}{d x}$.
Solution:

$$
\frac{d y}{d x}=\frac{2 x\left(x^{2}+1\right)-2 x\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}}=\frac{2 x^{3}+2 x-2 x^{3}+2 x}{\left(x^{2}+1\right)^{2}}=\frac{4 x}{\left(x^{2}+1\right)^{2}}
$$

Example 3: Find $\frac{d y}{d x}$ if $y=\frac{e^{x}}{e^{2 x}+1}$.

Solution:

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\left(e^{2 x}+1\right) \cdot e^{x}-e^{x} \cdot 2 e^{2 x}}{\left(e^{2 x}+1\right)^{2}} \\
& \frac{d y}{d x}=\frac{e^{x}\left(e^{2 x}+1-2 e^{2 x}\right)}{\left(e^{2 x}+1\right)^{2}} \\
& \frac{d y}{d x}=\frac{e^{x}\left(1-e^{2 x}\right)}{\left(e^{2 x}+1\right)^{2}}
\end{aligned}
$$

- Ex9K 1 aceg, 2 de, 4, 5a, 6a, 7

Continuous functions and Differentiable Functions

- The graph of a continuous function is one without breaks.
- It is usually a smooth unbroken curve, however it may have sharp corners.
- If the derivative of a function exists at a point on a curve this function is said to be differentiable at this point.
- The derivative exists at a point if it is possible to draw a tangent at that point. i.e. the curve must be smooth and continuous.

- Ex9L 2, 3, 4 Ex9M 1, 2, 3, 5

Note: No derivative exists at:

- "CUSP" point
- "END-POINT" (open or closed)
- "HOLE" point

Finding the Equation of a Tangent and a Normal

$$
y-y_{1}=\frac{-1}{m}\left(x-x_{1}\right) .
$$

- How would you find m if you knew the equation of the curve?
- Find $\frac{d y}{d x}$ and substitute the x-coordinate of P into it.

Example 1: Find the equation of the tangent and of the normal to the curve $y=(2 x+1)^{9}$ at the point $(0,1)$.
Solution: $\frac{d y}{d x}=(9)(2)(2 x+1)^{8}=18(2 x+1)^{8}$
At $x=0, \frac{d y}{d x}=18(2(0)+1)^{8}=18$, so $m($ tangent at $x=0)=18 \& m($ normal at $x=0)=\frac{-1}{18}$
Equation of the tangent:
$y=18 x+c$
$(0,1) \therefore 1=18(0)+c$
$c=1$
$y=18 x+1$
Equation of the normal:
$y=\frac{-1}{18} x+c$
$(0,1) \therefore 1=\frac{-1}{18}(0)+c$
$0=c$
$y=\frac{-x}{18}+1$

- Ex10A 1, 2, 3, 6, 8ac, 9abc, 14, 16

Rates of Change

- What is a rate?
- If you work and earn $\$ 12$ an hour your rate of pay $=\$ 12$ per hour $=\$ 12 / \mathrm{hr}$.
- This is linked with calculus by ...

If $P=$ total Pay (\$)
\& $t=$ time worked (hr)
The $P=12 t$
$\& \frac{d P}{d t}=12$
$\frac{d P}{d t}=$ rate of change of P with respect to t.

- For the unit of $\frac{d P}{d t}, \$$ per hour, $\frac{\$}{h r}$.

If you have to find...	Choose letters for the 2 variables	The rate you need is...	So you'll need an equation relating...	Unit of rate is ...
The rate of change of volume with respect to the radius	$V=$ volume $r=$ radius	$\frac{d V}{d r}$	V and r	$\frac{\mathrm{~cm}^{3}}{\mathrm{~cm}}$
The rate of increase of cost of production of dolls w.r.t the number of dolls	$C=$ cost $n=$ no. of dolls	$\frac{d C}{d n}$	C and n	$\frac{\$}{d o l l}$
The rate of change of circumference w.r.t height	$C=$ circumference $h=$ height	$\frac{d C}{d h}$	C and h	$\frac{m m}{\mathrm{~mm}}$
The rate of decrease of amount of water in a draining tank	$V=$ volume $t=$ time	$\frac{d V}{d t}$	V and t	$\frac{\mathrm{~m}^{3}}{\mathrm{~min}}$

- In the last case, what's missing? w.r.t 2 nd "variable" assumes it is time.
- Solving a rate problem is very, very similar to solving max/min prob.

1. need what rate? (no second variable - assume time)
2. find a formula.
3. formula must be in terms of one variable only, if not a relationship between the variables by other info. From question.
4. find the rate.
5. substitute given value of second variable, include units
6. answer all questions. If rate is positive, it is increasing, if the rate is negative, it is decreasing.

Example 1: A spherical balloon is being inflated. Find the rate of increase of volume with respect to the radius when the radius is 10 cm .

Solution:

1. $\frac{d V}{d r}$
2. $V=\frac{4}{3} \pi r^{3}$
3. \checkmark
4. $\frac{d V}{d r}=4 \pi r^{2}$
5. when $\mathrm{r}=10 \mathrm{~cm}$
$\frac{d V}{d r}=4 \pi(10)^{2}=400 \pi \mathrm{~cm}^{3} / \mathrm{cm}$
6. volume of the sphere is increasing at a rate of $400 \pi \mathrm{~cm}^{3} / \mathrm{cm}$.

Example 2: The amount of water in a tank (A litres) at any time (seconds) is given by $A=\frac{3}{t}$. Find the rate of change of A when $t=5 \mathrm{~s}$.

Solution:

1. need $\frac{d A}{d t}$
2. $A=\frac{3}{t}$
3. \checkmark
$A=3 t^{-1}$
4. $\frac{d A}{d t}=-3 t^{-2}$
$\frac{d A}{d t}=\frac{-3}{t^{2}}$
5. when $t=5$
$\frac{d A}{d t}=\frac{-3}{5^{2}}=\frac{-3}{25} \mathrm{l} / \mathrm{s}$
6. A is changing at a rate of $\frac{-3}{25} l / s$, when $t=5$

OR
A is decreasing at a rate of $\frac{3}{25} l / s$, when $t=5$

Example 3: A balloon develops a microscopic leak. It's volume $V\left(\mathrm{~cm}^{3}\right)$ at time, $t(s)$ is:

$$
V=600-10 t-\frac{t^{2}}{100}, t>0
$$

(i) At what rate is the volume changing when $t=10$ seconds ?
(ii) What is the average rate of change of volume in the first 10 seconds?
(iii) What is the average rate of change of volume in the time interval from $t=10$ to $t=20$ seconds?

Solution:

(i) need $\frac{d V}{d t}$ at $t=10$

$$
\begin{aligned}
& \frac{d V}{d t}=-10-\frac{2 t}{100}=-10-\frac{t}{50} \\
& \text { at } t=10, \quad \frac{d V}{d t}=-10-\frac{10}{50}=-10.2 \mathrm{~cm}^{3} / \mathrm{s}
\end{aligned}
$$

i.e. the volume is decreasing at a rate of $10.2 \mathrm{~cm}^{3} / \mathrm{s}$.
(ii) average rate of change of $\mathrm{V}: \frac{V_{2}-V_{1}}{t_{2}-t_{1}}$
$t_{1}=0, V_{1}=600 \quad$ and $t_{2}=10, V_{2}=499$
A.R.O.C $=\frac{499-600}{10-0}=\frac{-101}{10}=-10.1 \mathrm{~cm}^{3} / \mathrm{s}$

The volume is decreasing at an average rate of $10.1 \mathrm{~cm}^{3} / \mathrm{s}$.
(iii) average rate of change of $\mathrm{V}: \frac{V_{2}-V_{1}}{t_{2}-t_{1}}$
$t_{1}=10, V_{1}=499 \quad$ and $t_{2}=20, V_{2}=396$
A.R.O.C $=\frac{396-499}{20-10}=\frac{-103}{10}=-10.3 \mathrm{~cm}^{3} / \mathrm{s}$

The volume is decreasing at an average rate of $10.3 \mathrm{~cm}^{3} / \mathrm{s}$.

- Part (i) above is an INSTANTANEOUS rate of change,
- Part (ii) \& (iii) is an AVERAGE rate of change, i.e. and average of a number of instantaneous rates.

Particular Case

Displacement - Velocity - Acceleration

	Symbol	Units	Definition
Displacement	$x, x(t), s(t), d$	$\mathrm{~m}, \mathrm{~km}, \ldots$	The distance from a fixed point O
Velocity	$v, \frac{d x}{d t}, \frac{d s}{d t}$	$\mathrm{m} / \mathrm{s}, \mathrm{ms}^{-1}$, $\mathrm{km} / \mathrm{h}, \ldots$	The rate of change of displacement
Acceleration	$a, \frac{d v}{d t}, \frac{d^{2} x}{d t^{2}}$	$\mathrm{m} / \mathrm{s}^{2}, \mathrm{~ms}^{-2}$, $\mathrm{km} / \mathrm{h}^{2}$	The rate of change of velocity

- Original displacement/velocity/acceleration occurs at $t=0$

NOTE: If you were asked to find the average rate of velocity, it would be done as an average rate of change (i.e. $\frac{x_{2}-x_{1}}{t_{2}-t_{1}}$) using the displacement values not the velocity values. (If the velocity values were used then you get the average acceleration!)

- Ex10B 1, 2, 4, 8, 10, 12, 13

Finding the Stationary Points of a Curve

Example 1: Sketch the graph of $f(x)=(x+1)(x-2)(x-3)$ and determine the coordinates of all turning points (2 d.p.).

- Solution:
- 1.Find x and y intercepts:
- X-Int $(y=0) \quad$ Y-Int $(x=0)$
$(x+1)(x-2)(x-3)=0$
$x=-1,2,3$

$$
f(0)=(0+1)(0-2)(0-3)=1 \times-2 \times-3=6
$$

- 2. Stationary Points $\left(\frac{d y}{d x}=0\right)$:

$$
\begin{aligned}
& f(x)=(x+1)\left(x^{2}-5 x+6\right) \\
& f(x)=x^{3}-5 x^{2}+6 x+x^{2}-5 x+6 \\
& f(x)=x^{3}-4 x^{2}+x+6 \\
& \therefore f^{\prime}(x)=3 x^{2}-8 x+1
\end{aligned}
$$

- $\quad f^{\prime}(x)=0$
$3 x^{2}-8 x+1=0$

$x=0.13,2.54$ (quadratic formula)
$\Rightarrow(0.13,6.06) \&(2.54,-0.88)$
- 3 Type of Stationary Points:
- Local Minimum
- Local Maximum;
- Point of Inflection.

Example 2: Using the above example, determine the nature of the Turning Points.

Solution:

x	0	~ 0.13	1	~ 2.54	3
$f^{\prime}(x)$	1	0	-4	0	4
Slope	1	-	1	-	1
Nature of T.P		Local Maximum		Local Minimum	

- Consider the 3 graphs: $y=x^{3} \quad y=x^{3}-x \quad y=x^{3}+x$
- Graphs similar but different number of stationary points.
- Ex10C 1 LHS, 2, 3, 5, 7, 10;
- Ex10D 1 cef, 2 adf, 4, 10, 12, 13, 17, 18, 22, 24, 25, 26

NOTE: $2^{\text {nd }}$ derivatives can be used, f " $(x)<=\operatorname{Max}, f "(x)>0=\operatorname{Min}, f "(x)=0=$ inconclusive e.g. from above $f "(x)=6 x-8, f "(0)=-8, f^{\prime \prime}(0.13)=-\mathrm{ve}, f "(x)=-2$ and $f "(3)=10$

Maxima/Minima Problems

Solving a maximum/minimum problem

SETP 1: Need to Maximise/minimise what? Call it " A "
STEP 2: Write the formula for $\mathrm{A}=$ \qquad making up variables where necessary, maybe a diagram could help.

STEP 3: Can you write another equation?
$\mathrm{A}=$ must be written as $\mathrm{A}=\ldots$ (with only 1 variable on the Right Hand Side).
STEP 4: Differentiate $\mathrm{A}=$ (i.e. $\frac{d A}{d x}$) and equate to zero, $\frac{d A}{d x}=0$ and solve for x .
STEP 5: Test for the type of stationary point obtained.

x					
$\frac{d A}{d x}$					

Are any answers impossible (i.e. a negative length)
STEP 6: Answer the question in words.

Example 1: Four square corners are removed from a sheet of card of dimensions 21 cm by 30 cm . The sheet is folded to form an open rectangular container. Find the dimensions (to 1 d.p.), such that the total volume of the container is a maximum.

Solution: (using the 6 steps from the photocopy sheet).

1. Need to maximise the volume of the container, V .
2.

$$
V=L \times W \times H
$$

3. Right Hand side has 3 variables (must be in terms of only 1 variable)

$$
\begin{aligned}
& L=30-2 H \\
& W=21-2 H \\
& V=(30-2 H)(21-2 H) H \\
& \hline
\end{aligned}
$$

4. Maximise \rightarrow let the derivative $=0$ i.e. $\frac{d y}{d x}=0$.

Expand $V=$
$V=\left(630-60 H-42 H+4 H^{2}\right) H$
$V=\left(630-102 H+4 H^{2}\right) H$
$V=630 H-102 H^{2}+4 H^{3}$
$\frac{d V}{d H}=630-204 H+12 H^{2}$
$6\left(105-34 H+2 H^{2}\right)=0$
$2 H^{2}-34 H+105=0$
Quad. Formula...
$H=\frac{17 \pm \sqrt{79}}{2}, H=4.1, H=12.9$
5.
(a) $V=(30-2 H)(21-2 H) H$

Must ignore $H=12.9$ why? (hint: what is the implied domain of H ?)
(b) $H=4.1 \mathrm{~cm}$

H	4	4.1	5
$\frac{d V}{d H}$	6	0	-90
	$/$	-	1

Therefore a local maximum
$L=30-2 H \quad W=21-2 H$
6.
$\begin{array}{rl}L=30-2\left(\frac{17-\sqrt{79}}{2}\right) W & =21-2\left(\frac{17-\sqrt{79}}{2}\right) \\ L=21.9 \mathrm{~cm} & W=12.9 \mathrm{~cm}\end{array}$

The maximum volume is obtained with the dimensions:

$$
\begin{aligned}
& H=4.1 \mathrm{~cm} \\
& \\
& \& \quad \begin{array}{l}
H=21.9 \mathrm{~cm} \\
\\
\hline
\end{array} \begin{array}{l}
\\
\hline
\end{array}=12.9 \mathrm{~cm} \\
& \hline
\end{aligned}
$$

- The maximum/minimum value of a function DOES NOT NECESSARILY OCCUR AT A TURNING POINT. It depends on the feasible Domain caused by the Physical constraints.
- Ex10F 1, 2, 3, 4, 6, 7, 12, 14, 16, 17 Worksheet

 af voчybnba ue puif 'kasan

 sniper jo arpyds e әpisul iy oz pousisap ω

Absolute Maximum/Minimum Problems

Example: Let A be the function that models the total enclosed area when a 100 cm piece of wire is cut into two pieces, where one piece is used to form the perimeter of a square, and the other piece is used to form the circumference of a circle.
(a) Show that A can be modelled by, $A:[0,100] \rightarrow R, A(x)=\frac{x^{2}}{16}+\frac{(100-x)^{2}}{4 \pi}$, where x cm is the length of the piece of wire used to form the perimeter of the square.
(b) For what values of x, is A is a maximum and a minimum?
(c) What is the minimum area?

Solution:

- Ex10E 1, 3, 5, 7, 9, 10, 11, 13, 14, 16

Calculator use: $\operatorname{fmax}(a(x), x) \mid 0 \leq x \leq 100$

Families of functions

Example 1: Consider the family of functions of the form $f(x)=(x-a)^{2}(x-b)$, where a and b are positive constants with $b>a$.
a Find the derivative of $f(x)$ with respect to x.
b Find the coordinates of the stationary points of the graph of $y=f(x)$.
c Show that the stationary point at $(a, 0)$ is always a local minimum.
d Find the values of a and b if the stationary points occur where $x=3$ and $x=4$.

Solution:

a

$$
f^{\prime}(x)=2 \times 1 \times(x-a) \times(x-b)+(x-a)^{2} \times 1=(x-a)(2(x-b)+(x-a))=(x-a)(3 x-2 b-a)
$$

$$
f^{\prime}(x)=(x-a)(3 x-2 b-a)=0 \Rightarrow x=a, x=\frac{a+2 b}{3}
$$

b

$$
\begin{aligned}
& f(a)=0 \Rightarrow(a, 0) \\
& f\left(\frac{a+2 b}{3}\right)=\frac{4(a-b)^{3}}{27} \Rightarrow\left(\frac{a+2 b}{3}, \frac{4(a-b)^{3}}{27}\right)
\end{aligned}
$$

c look at graph, $x<\mathrm{a}, f^{\prime}(x)>0$, and if $a<x<\frac{a+2 b}{3}$, then $f^{\prime}(x)<0$
d Since $a<b$, we must have $a=3$ and $\frac{a+2 b}{3}=4 \Rightarrow b=\frac{9}{2}$

Example 2: The graph of $y=x^{3}-3 x^{2}$, is translated by a units in the positive direction of the x-axis and b units in the positive direction of the y-axis (where a and b are positive constants).
a Find the coordinates of the turning points of the graph $y=x^{3}-3 x^{2}$.
b Find the coordinates of the stationary points of its image.

Solution:

a

$$
\begin{aligned}
& \frac{d y}{d x}=3 x^{2}-6 x \Rightarrow 3 x^{2}-6 x=0 \Rightarrow 3 x(x-2)=0 \Rightarrow x=0, x=2 \\
& x=0, y=0 \Rightarrow(0,0) \\
& x=2, y-4 \Rightarrow(2,-4)
\end{aligned}
$$

b The turning points of the image are: (a, b) and $(a+2, b-4)$.

		met ${ }^{\text {ct }}$
A(x) $=x^{3}-3 \cdot x^{2} \quad$ Done	$d(x)=\frac{a}{d x}(f(x))$	
$\begin{aligned} & (x-a)+b \\ & x^{3}+(-3 \cdot a-3) x^{2}+3 \cdot a(a+2) \cdot x-a^{3}-3 \cdot a^{2}+b \end{aligned}$	$d f(x)$	$3 \cdot x^{2}-6 \cdot x$
	solve $(a)(x)=0, x)$	$x=0$ or $x=2$
$d(x)-\frac{d}{d x}(f(x)) \quad$ Done	(0)	,
$d(x)$	(2)	4
	1	
(1,d) 1 ,		
		2at
$\begin{array}{lr} f(2) & \text { Done } \\ g(x)=f(x-a)+b & 4 \\ \frac{d}{d x}(g(x)) & 3 x^{2}-6(a+1) x+3-a(a+2) \end{array}$	$\frac{d}{d x}(g(x)) \quad 3 \cdot x^{2}-6(a+1) \cdot x+3 \cdot a \cdot(a+2)$	
	solve $\left(3 \cdot x^{2}-6 \cdot(a+1) x+3 \cdot\right.$	$\text { 2) }-0, x \text {) }$ $-a$ or $x=a+2$
$\begin{aligned} & \text { solve }\left(3 \cdot x^{2}-6 \cdot(a+1) \cdot x+3 a(a+2)-0, x\right) \\ & x-a \text { or } x-a+2 \end{aligned}$	$g(a)$	b
	$g(a+2)$	$b-4$
	1	

- Ex10G 1, 2, 3, 5, 7, 9

Past Exam Questions

 2008 Exam 1Question 1
a. $\mathrm{Lex} y=\left(3 x^{2}-5\right)^{2} \cdot$ Fimid $\frac{d y}{d x}$
\qquad
\qquad
b. Let $f(x)=x e^{3}$. Evaluate $f(0)$
\qquad
\qquad

$$
2+3=5 \text { maxks }
$$

Questint 6

a. The graph of the finction f a down where

$$
f(x)= \begin{cases}-2 x^{2}+x^{2}-4 x+1 & \text { if } x s(-, 1) \\ -|x-2|+3 & \text { if } x \in \mid t, \infty)\end{cases}
$$

The stationary pouat of the fhection f are labelled with their cocedunates Write doun the donsain of the denvative function f?
b. By mefornug to the griph in part a, skefch the graph of the finction with rule $y=\left|x^{3}+x^{2}-4 x+1\right|$ for $x<1$, on the ser of axes belom
Label stahoosry points with heir coondintes (Do not athenget to find 5 -acs miereepts)

Quetion 9

 ade length x cm and the length of tee brick is $y \mathrm{~cm}$.

Die volime of the tock is $1000 \mathrm{~cm}^{3}$
A. Find m expression for y in teras of π
b. Show that the totat surfice siva, A taur 2, of die tonck 15 given by

$$
A=\frac{4000 \sqrt{3}}{t}+\frac{\sqrt{33 x^{2}}}{2}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Find the vilue of x for which the brick has minimam total surfice area. (Yoo do not have to find this minimum.)

2008 Exam 2

Question 22

The graph of the function f auth doeaun $[0,6]$ is shown below.

Which one of the followigg is not true?
A. The fusction is mot connmous at $x=2$ mad $x=4$
B. The function exists for all values of 8 betwern 0 and 6
C. $f(x)=0$ for $x=2$ and $x=5$
D. The fiuction is positive for $x \in[0,5)$
E. The gradieat of the functoon is noe defined at $x=4$

Quention 3

Tramania Joves is in the frigle, defzing for gold He flals tee gold ar, Y whech is 3 km from a pouth A
Pcuit d is on a atrigte beach
Taumani ' complin in Y which it 3 hm from a point B. Pount B is alve on the itruight beach
$A B=18 \mathrm{~km}$ ad $A M-N B=x b m a d A X=B Y=3 \mathrm{~km}$

While he is digging up the pold. Tamanai is bitten by a soute ntich injech soxin into his blood After be in bitten, the coocentration of the toxim in lui bloodrtisam increswen vie tine according io the equation

$$
y=50 \log _{8}(1+2 n)
$$

whery is the concentration and i is the tine it houss atier the anake titer him
The soxie will bill him If it concmutrates readhes 100

\qquad
 the beach of 13 hull.

\qquad

In order to get the antidote. Tmaumia rums through the jragle to M on the beach, rues alosg the bench to N and

c. Show that the time twion to rearh the camp. Thosirs, is given by

$$
T=2\left(\frac{\sqrt{9+x^{2}}}{5}+\frac{9-x}{13}\right)
$$

\qquad
\qquad
d. Find the vilue of x which allow Taumis to get to his canp in the manum time
\qquad
e. Shew that be gets to hin camp in time to get the aatidste:
\qquad
\qquad
 the qrantiry of antidste in has body decreaves oret time
 the quauiry of antidcte decreases in lis body:
 this Each section of the curve las exactly the same shapes curve Ais

The equation of the curve $A B$ is $z-\frac{16}{d+1}$
f. Whate doun the cocrlinaten of the point A and C
\qquad
\qquad
8. Find te egution of be curve $C D$.
\qquad

Quention 4
The gapl of $f(-x, \pi) \cup(x, 3 \pi) \rightarrow R, f(x)=\tan \left(\frac{\pi}{2}\right)$ ns thown below

a. 1 Frant $f\left(\frac{\pi}{2}\right)$
\qquad
\qquad
ii. Find the equation of tie aun mal te the groph of $y-f(x)$ at the pour where $5-\frac{\pi}{2}$
iii. Sketch the proph of thin nonual an the amer above Give the exact axiv interceph:
b. Find be exact viluts of $x \in(-\pi, \pi) \cup(\pi, 3 \pi)$ math tat $f(0)=f\left(\frac{\pi}{2}\right)$
\square
\qquad

2 mark
Let $g(x)=f(x-a)$
8. Find be exact value of a a $(-1,1)$ wheh that $\mathrm{g}(\mathrm{I})=1$
\qquad
\qquad
Let $k:(-\pi, \pi) \cup(\pi, 3 \pi)-R, h(x)=\operatorname{men}\left(\frac{\pi}{2}\right)+\tan \left(\frac{x}{2}\right)+2$
d. i. Find $h^{\prime}(\pi)$
d. i. Fiod $\hbar^{\prime}(x)$
\qquad
ii. Solve Be aquation $h^{\prime}(x)=0$ far $x=(-a, \pi) \cup(\pi, 3 \pi)$. (Grive cect vilue.)

2009 Exam 1

Question 1
a. Differentiate $x \log (x)$ with respect to x.
b. For $f(x)=\frac{\cos (x)}{2 x+2}$ find $f^{\prime}(x)$.

2009 Exam 2

Quetion 7
For $)=e^{t x} \cos$ ($3 x$) the nte of chnage of y with rexpect to x when $x=0$ is
A. 0

悬 2
C. 3:
D. - 6
I. - 1

Quentinn s

For the funchoe $f \pi \rightarrow R f(x)=(x+3)^{\prime}(x-1)$, the nlovet of R for which the gradert of f is negative is
A $(-\infty, 1)$
B. $(-5,1)$

C $(-5,-1)$
D. $(-\infty,-5)$

E $(-5,0)$
Quentise 9
The lugent at the pand (1, S) an the erayh of ibe corve $y=f(6)$ has rquainn $y-3+2$.
Tbe tungeri at the poust (3,8 位 on the cirve $y=f(x-2)+y$ hes eqpatice
A. $y=3 x-1$
B. $y=1-5$
C. $y=-2 x+14$
D. $y=z x+4$
E. $y=2 x+2$

Quention 15

For $y=\sqrt{1-f(0)}, \frac{d y}{d x} n$ equal to
A. $\frac{2 f^{\prime}(x)}{\sqrt{1-f(x)}}$
8. $\frac{-1}{2 \sqrt{t-\Gamma(0)}}$
C. $\frac{1}{2} \sqrt{1-f^{\prime}(x)}$
d. $\frac{3}{2\left(0-f^{\prime}(x)\right)}$
E. $\frac{-f(x)}{2 \sqrt{1-f(0)}}$

Quesion 21

 $(-3,0)$ The uivamm vilus of be dernvine fusction in 50
The value af s for whach the graph of $y=f(6)$ has a local naximum s
A. -2
B. 2
C. -3
D. 3
E. $\frac{1}{2}$

Question 2

Sectan 100 paven Hloug a bodge over a valley
Section NP passes trough a avexel in a monathin
Section $P Q$ is $6: 2 \mathrm{~km}$ locel
 by the grapt of

$$
y=\frac{1}{200}\left(a x^{2}+b x^{2}+c\right) \text { when } a, b \text { nad } c x \text { xer real umben. }
$$

All musumunth we in blowetars
a. The curne defined from M to P panas through $N(2,6)$ The gadent of tie curve at N is -0.05 and tbe curvelan a trumatg point at $x=4$.

ii. Heace show that $a=1, b=-6$ med $c=16$
\qquad
\qquad
\qquad
\qquad
\qquad
b. Find giving exact valines
i. the coordinates of M rad P
\qquad
ii. the length of the thanel
\qquad
\qquad
\qquad
iii. the maximsan depth of the valley below the train tack
\qquad
\qquad
 nowar that the froalf of the finuin coum out of the nimal in P ?

$$
v=\hbar \log _{4}\left\{\frac{(d+1)}{7}\right\}
$$

c. Find die vilue of k in temulu of w
\qquad
\qquad

1 mank
4. If $*=\frac{120 \log _{d}(2)}{\log _{d}(7)}$ when $d=25$, find the valse of w
\qquad
\qquad
\qquad
\qquad

Find the exal diutumee licus the finet of the temen to the lares rock nhen the tain fielly wope

2010 Exam 1

Quentiva 1
a. Differentiate $x^{3} e^{3 x}$ with respect to x
\qquad
b. For $f(x)=\log _{3}\left(x^{2}+1\right)$, find $f(2)$.
\qquad
\qquad
\qquad

Quention 9

Part of the gragh of $f^{\prime} \pi^{+} \rightarrow R . f(x)=x \log ,(i)$ is shown below:

2. Find the demanre of $x^{2} \log _{e}(x)$
\qquad
h. Une your answer to part a. to find the seen vf the sladed region in the fom a log. (b) $+c$ whered, b and

Quentiva 11

A cyliuder fin exartly an a nyld curcular cone wo that the base of the cone and one end of toe cytunder we in the senve plane as shem in the digumin below. Tbe lieight of the cose is 5 cm and the ratius of the cone is 2 cm . The rition of the eyfinder is r on md the beyhit of tive cytinter in it cm

For the entinder inacribed in the cose in showa above
a. Ind h is lerm of r r
\qquad

$\pi=2 m h+2 m^{2}$
h. full S is lemis of,
\qquad
find tie value of r for which $\$$ s a maxiamm
\qquad
\qquad
\qquad
\qquad

2010 Exam 2
Question 6
A function g with domain R has the following properties

- $g^{\prime}(x)=x^{2}-2 x$
- the graph of $g(x)$ panses through the point $(1,0)$
$g(x)$ is equal to
A. $2 x-2$
B. $\frac{x^{3}}{3}-x^{2}$
C. $\frac{x^{3}}{3}-x^{2}+\frac{2}{3}$
D. $x^{2}-2 x+2$
E. $3 x^{3}-x^{3}-1$

Question 16
The gradient of the function $f: R \rightarrow R, f(x)=\frac{5 x}{x^{2}+3}$ is negative for
A. $-\sqrt{3}<x<\sqrt{3}$
B. $x>3$
C. $x \in R$
D. $x<-\sqrt{3}$ and $x>\sqrt{3}$
E. $x<0$

Question 17
The furiction f is differentiable for all $x \in R$ and satafies the following condition.

- $f^{\prime}(x)<0$ where $x<2$
- $f^{\prime}(x)=0$ wbere $x-2$
- $f^{\prime}(x)=0$ where $x=4$
- $f^{\prime}(x)>0$ wbere $2<x<4$
- $f^{\prime}(x)>0$ where $x>4$

Which one of the followne is true?
A. The griph of f has a local maximum pout where $x=4$
B. The graph of f has a stationary pount of intlechon where $x=4$
C. The graph of f has a local maxumum point where $x=2$
D. The graph of f has a local mimimum point where $x=4$
E. The graph of f has a stativany pount of inflection where $x=2$

Question 4

Cousider the finction $f R \rightarrow R \cdot f(x)=\frac{1}{27}(2 x-1)^{\prime}(6-3 x)+1$

1. Fial the 2 -coenfinate of eisch of the stanomary pouts of f and state the natine of each of thene stationary joints
\qquad
\qquad
\qquad
\qquad

In the followigg, f is the finction $f R \rightarrow R, f(x)=\frac{1}{2 f}(a x-1)(b-3 y)-1$ where s and b wre ceal cominuts
h. Write downe in terus of a mad b, the porsubie values of s for whech $(x, f(0))$ is a stahomary pent of f
\qquad

d. Find a in terms of b if f has one stationary point.
C. What is the maximum mumber of stationary points that f can have?

2011 Exam 1

Question 1
a. Differentiate $\sqrt{4-x}$ with respect tox.

b. $\operatorname{If} g(x)=x^{2} \sin (2 x)$, find $g^{\prime}\left(\frac{\pi}{6}\right)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Quention 10

 $E C$ wifh $A B=E D=2 \mathrm{~cm} \mathrm{mat} B C=a \mathrm{~cm}$, where α is a poutive comitat

$$
\angle A A E-\angle C E A=\frac{\pi}{2}
$$

Let $\angle C B O=\theta$ whece $0<\theta<\frac{\pi}{2}$

a. Find $B D$ and $C D$ in urnun of a and θ
\qquad
\qquad
\qquad
b. Find the lengh $L \mathrm{~cm}$, of the wre in the trame, mrhoding legit $B D$, in temm of a and 6
\qquad
c. Find $\frac{d L}{d \theta}$, sed hence show luat $\frac{d L}{d y}=0$ when $B D=2 C D$.
\qquad
\qquad
\qquad
\qquad
\qquad
d. Find the maximus value of L if $a=3 \sqrt{5}$
\qquad
\qquad
\qquad
\qquad
\qquad

2011 Exam 2

Question 4
The dervative of $\log _{g}(2 f(x))$ with respect to x is
A. $\frac{f(x)}{f(x)}$
B. $2 \frac{f^{\prime}(x)}{f(x)}$
C. $\frac{f(x)}{2 f(x)}$
D. $\log _{i}\left(2 f^{\prime}(x)\right)$
E. $2 \log _{0}\left(2 f^{\prime}(x)\right)$

Question 17

A. $4 x=y$
B. $4 y+x=7$
C. $r=\frac{x}{4}+1$
D. $x-4 y=-5$

E $4 y+4 x-30$

Question 9
The graph of the firection $y=f(x)$ is thoun below

Which of the following could be the graph of the derivazive fractica $y=f^{\prime}(x) ?$
B.

D.
E.

Quettion 18
The equahon $x^{1}-9 x^{2}+15 x+w=0$ huss ouly one volution for x when
A. $-7<3<25$
B. $w \leq-T$
C. $w \geq 25$
D. $x<-7$ or $W>23$
E. $w>1$

Oucrtia 3
a. Consider the fiestran $f: R \rightarrow R f(x)=4 x^{3}+5 x-9$
i. Find $f^{\prime}(6)$
ii. Explain why f $f^{\prime}(1) \geq 5$ for allif x
b. The culue fuection p s definod by $p: R \Rightarrow R ; p(x)=a^{3}+b c^{2}+a x+k$, where a, b, c cod k we mal manbers. L. If p has m stationary pomb what powshle values can m hare?
i. If p los an unverse factoon. whor posulble values ta w have?
a. The cuhic functian of is defined by of $k \rightarrow k, p(t)=3-2 x^{2}$
i. White down mexpresion for $g^{-1}(x)$
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

$$
2+2=4 \text { macks }
$$

The cobic timetine g is defined by $z R \rightarrow R, g(x)=x^{2}+2 x^{2}+a+k$, where r and k are anal momiten, i. If g la exactly our staticaory pont, find the vatue of c
\qquad
\qquad
i. If that stationary point occars at a pount of antersection of $y=g(x)=n d y=g^{-1}(x)$, find the value of k.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Quendiea 4

 $y=r^{2}-1, x \geq 0$ an thoun triew. All leugth ses mencured in kilmpers
 plant, whach is cosenctiol to the vilige by a saripht pipelise.

 fhat camine the wafir from the draluation plate to the villagr is gival by

$$
L=\sqrt{m^{4}-3 m^{2}+4}
$$

2012 Exam 2

Ouestian 2
For the fimetion with rule $f(x)=x^{3}-4 x$, the average me of change of $f(x)$ with respect to x on the interval
[1.3]
A. 1
B. 3
C. 5
$\begin{array}{ll}\text { D. } & 5 \\ \text { E. } & 9\end{array}$

Questinit 4

Given that g is a dfffereatiable funchion and k is a real mumber the denvative of the componte function
$g\left(e^{27}\right)$ is
A. $\left.\operatorname{lgg}^{(1)} e^{b}\right) e^{h}$
B. $\operatorname{kg}\left(e^{m}\right)$
C. $k^{x^{x}} g\left(d^{2}\right)$
D. ${k v^{k \prime}}^{\prime \prime} g^{\prime}\left(e^{n}\right)$

E $\frac{1}{z} e^{2} r^{\prime}\left(\mathrm{c}^{m}\right)$

Quentinas

For the roal menbers $p<\omega<0<\mu<q$, we have $f(p)=f(p)=0$ and $f(x)=f(0)=0$
The gradial of the graph of $y=f 00$ is aryatite fot
A. $(-x, \infty) \cup(x, \infty)$
B. $(5, n)$
C. $(p, 0) \cup(g, x)$
D. $(p, 0) \cup(0, q)$
2. (p, q)

Questina 9
The momul so tie grapt of $y-\sqrt{b-x^{2}}$ lus a gandime of \exists uhes $r=1$.
The vulue oflon
A. $-\frac{10}{9}$
B. $\frac{10}{4}$
C. 4
B. It
E. 11

0

Question 16

The graph of a cubue finctoon f has a local maxmum as $(0,-3)$ nof a local mumum at ($0,-8)$
The values of c, soch thas die ecquation $f(x)+c=0$ has exactly see sotation. ate
A. $3<c<11$
B. $e>-3$ oc $c<-8$
C. $-\boldsymbol{H} \lll<-1$
D. $\mathrm{c}<3$ or $c>8$

王 $\lll-\mathbb{E}$

Questinn 15

The tanpat to the pephb of $y=\log (0)$ at the point $(a, \log ,(b))$ crosses the raxis it the poun $(b, 0)$, where $b<0$
Which of the following is falvet
A. $1<\pi \leq e$
ai. The gradient of the toment is positive
C. $a>e$
D. The gratient of the tangent $n \frac{1}{d}$
E. $a>0$

Questinu 22

The graph of a deffercutable fimctron fhen a locil maximan at (a, b), where $a<0$ and $b>0$, and a bocal
minuman it ($c, d)$, where $c>0$ and $d<0$
The griqh of $y=-5(x-2 y)$ has
A. a local miminum at $(a-2,-b)$ md a local maneum an $(c-2, d)$
B. locat minimu onf $(a-2,-b)$ and $(c+2, d)$
C. Iocal maxema at $(a+2, b)$ and $(c+2,-d)$
D. a local minnum at $(a-2,-\delta)$ anda beal manerm af $(a-2,-d)$
E. Ifoal minima of $(c+2,-d)$ and $(a+2,-b)$

Quesbial 1
A sobid biock in the shape of a rectangular proum has a bese of wuth $x \mathrm{~cm}$. The lengh of te bese is two ond a-tulf fimes the witht of the buse

The block has a toeal surface ares of 6430 sq am
a. Shew tur if the heighe of the Nock as $\hbar \mathrm{cm} . \mathrm{A}=\frac{6480-5 \mathrm{x}^{2}}{7 x}$
h. The volume V cmi, af fie hlock s given $\operatorname{ly} V(\bar{y})=\frac{5 \times\left(6400-5 x^{2}\right)}{14}$, Ones that $\bar{F}(9) 0 \operatorname{mad} x>0$, find the possible valoes of x^{14}
\qquad
\qquad
\qquad
\qquad
\qquad
\square
c. Find $\frac{d y}{d t}$, exprecuing sour mswer in the foem $\frac{d}{d h}=m^{2}+b$, whese on and d are real mumbers
\qquad

2013 Exam 1

Quectios 16 (7 mmks)

Lef $f(0, x) \rightarrow R, f(x)=2 e^{-t}$
Arybt-angled trimple $O \rho^{p}$ has veriex O at the angin, vertex Q os the x-aus and vetex P on the pryal of f as thewn The condixites of P are $(x, f(x)$)

2. Find the were, 4 . of the trungle ogp in terms of x

\qquad
\qquad
\qquad
\qquad

2013 Exam 2

Question 6

For the fimction $f(x)=\sin (2 \mathrm{~m})+2 x$, the werage rate of charge for $f(x)$ with respect to x over the interval
$\left[\frac{1}{4}, 3\right]=$
A. 0
B. $\frac{34}{19}$
C. $\frac{7}{2}$
D. $\frac{2 \pi+10}{4}$

E $\frac{23}{4}$

Question 11

If the tamgeut to the praph of $y=c, a \neq 0$. at $s=c$ passes through the angin, then c is equal to
A. 0
A. $\frac{1}{d}$
C. 1
D. a
E. $-\frac{1}{a}$

Question 12
Let $y-4 \cos (x)$ and x be a finctans of r wech that $\frac{d y}{d t}-3 e^{2 x}$ and $r=\frac{3}{2}$ when $t=0$
The value of $\frac{d y}{d t}$ when $x=\frac{x}{2}$ si
A. 0
B. $3 \pi \log _{4}\left(\frac{\pi}{2}\right)$
C. -4π
D. $-2 \pi \quad$ De
E. $-12 e$

Question 19
Part of the graph of a function $f:[0, \infty) \rightarrow R, f(x)=e^{x \sqrt{3}} \sin (x)$ is shown below The first three turning points are labelled T_{1}, T_{2} and T_{3}.

The x-coordinate of T_{3} is
A. $\frac{8 \pi}{3}$
B. $\frac{16 \pi}{3}$
C. $\frac{13 \pi}{6}$
D. $\frac{17 \pi}{6}$
E. $\frac{29 \pi}{6}$

Question 21
The cubic function $f: R \rightarrow R, f(x)=a x^{3}-b x^{2}+c x$, where a, b and c are positive constants points when
A. $c>\frac{b^{2}}{4 a}$
B. $c<\frac{b^{2}}{4 a}$
C. $c<4 b^{2} a$
D. $c>\frac{b^{2}}{3 a}$
E. $c<\frac{b^{2}}{3 a}$

Questins 1 (12 manky)

 tume in hous from the begumage of the 24 -hona tune inberval

ii. Show that the value of c 立 $\sqrt{3}+\frac{2 \pi}{3}$. 1 mark

 muter

\qquad
2. Find the coontintes of the pouit P

(Ewethn 3 (19 mark)

 of wharhis stoun in the Arumin lelore

 modelied by the functiva with mie

$$
f(x)=\frac{1 x^{3}}{4}-\frac{7 x^{2}}{32}+\frac{1}{2}
$$

a. Fan lie coordrates of O. the deepeet porat in the lak

 hamer in the morman
t. Whit dows the equoben if he lite that pasus thenghiamin 2 mabs
\qquad
\qquad
c. L. Sbow that bes-cocellate of D, te col pout of the taned. is $\frac{2}{3}$ I mark

Hi. Find the length of the turnel $A D$
2 muts
 moves down Ae raluwy las is deveribal by fie function

$$
V[0,4] \rightarrow R, J(x)=k \sqrt{x}-\pi x^{2} .
$$

 and k and ware poritive real constars

ii. The shaded region shown in the diagram ahove is bounded by the graph of g, the tangent at the point A, and the x-axis and y-axis.
Evaluate the area of thas shaded region.

2014 Exam 1

Question 1 (5 marks)
a. If $y=x^{2} \sin (x)$, find $\frac{d y}{d x}$.
\qquad
\qquad
\qquad
b. If $f(x)=\sqrt{x^{2}+3}$, fiond $f^{\prime}(1)$.
\qquad
\qquad
\qquad

Question 5 (7 marka)

Consider the fimetion $f:[-1,3] \rightarrow R, f(x)=3 r^{2}-x^{3}$.
a. Find the coordinates of the stationary points of the finction.
\qquad
b. On the axes below, sketch the graph of f Label any end pounts with their coordinates

Questban 10 (7 marks)

A hae ablersects the coordinute awes at the pouts $V /$ and V wnith coordinutes $(0,0)$ and $(0, v)$, repectively, where n mid γ are povitive rol namber and $\frac{5}{2} \leq N \leq 6$.
 Q. 4) as shomen

If a mad b are noe zero real mambers, find the values of a and b.
3 marlo
b. The eectangle $O P G R$ has a vertex at Q on the line The coordinates of Q afe $(2,4)$, as shown

1. Fund an exprestion for Y in tirms of 4

1 mak

nиmimai
 zaxuman

1 uank
\qquad
\qquad

2 marks

2014 Exam 2

Questina 4
Lef f be afunction with dowim R - inch that $f(5)-9$ and $f^{\prime}(x)$ <o when $x<5$
At $x=5$, Ar gryph of f hass
A. bonl umann

A: bonel maxuan
C. gradent ofs.
D. gradient of-5
E. thatonary poust of intection.

```
Qoerrban 6
Me faccono f:0->R with rule }f(x)-2\mp@subsup{x}{}{3}-9\mp@subsup{x}{}{2}-108x\mathrm{ mill lave an urene factmo for
A. \(D=R\)
i. \(D=(C, x)\)
C. \(D=\left\{-\frac{4}{2}, 0\right)\)
D. \(D=\langle-x, 0\}\)
I. \(D=\left[\frac{1}{2},=\right]\)
```


Quentien 15

The value of x for whach the volume of the box is a maximum as clonets to
A. 0.8
B. 11
C. 1.6
D. 20
E. 3.6

Quentive 11
 melo semin r

The sma of the thensan is s Imaxnal uten be valo of x is
A. $\frac{\pi}{12}$
H. $\frac{\pi}{6}$
c. $\frac{\pi}{4}$
A. $\frac{\pi}{3}$
E. $\frac{5}{12}$

Quntinu 3 (11 ancha)

2015 Exam 1

2015 Exam 2

Qaceisos 3

A. $y=-3 x+h)\left(x-c c^{\prime}(x-d)\right.$

B $y=2 y+b)(x-a)^{2}(x-4)$
C. $y=-2(x-b)(x-c)^{2}(x-b)$
D. $y=2\left(x-b x_{x}-c\right)(x-a)$

1. $y=-3(x-b)(x+c)^{1}(x-d)$

