

Activity - Change of Basis – Defining Coordinate Grids

Goals:

- Make the visual connection between the basis vectors and the coordinate grid they define.
- Express any vector given in the Standard Cartesian Coordinate system (defined by the basis vectors

 $\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$) as a vector in any **uv**-grid system which is defined by the basis vectors **u** and **v**.

• Understand how the matrix constructed with columns of basis vectors can be used to translate points from the **xy**-representation to a **uv**-representation of the plane.

Representing same vector and location with different basis vectors

- 1. In the **xy**-grid (Standard coordinate system), $\mathbf{P} = (4, 4)$ is the terminal point of the vector $\overrightarrow{\mathbf{OP}} = \begin{bmatrix} 4\\4 \end{bmatrix}$ in standard position. Using precise notation $\overrightarrow{\mathbf{OP}} = \begin{bmatrix} 4\\4 \end{bmatrix} \mathbf{e}_{1,e_{2}}$ means $\overrightarrow{\mathbf{OP}} = \begin{bmatrix} 4\\4 \end{bmatrix}$ is defined in terms of the basis vectors $\mathbf{e}_{1} = \begin{bmatrix} 1\\0 \end{bmatrix}$ and $\mathbf{e}_{2} = \begin{bmatrix} 0\\1 \end{bmatrix}$.
- 2. Use a **uv**-grid with basis $\mathbf{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$ to determine the multiples of the vectors **u** and **v** that define a linear combination of $\overrightarrow{\mathbf{OP}}$.

Use the **uv**-grid in the graph to answer the following

- If c_1 is the multiple of **u**, then $c_1 =$ _____
- If c_2 is the multiple of **v**, then $c_2 =$ _____

Using your observation of the values of c_1 and c_2 , verify that the following equation is true.

$$c_1\mathbf{u} + c_2\mathbf{v} = \begin{bmatrix} 4\\ 4 \end{bmatrix}$$

Algebraically, determine c_1 and c_2 , from:

$$c_1\mathbf{u} + c_2\mathbf{v} = \begin{bmatrix} 4\\4 \end{bmatrix}$$

In the **uv**-grid, with basis
$$\mathbf{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$, state
 $\overrightarrow{\mathbf{OP}}_{\mathbf{uv}} = \underline{\qquad}$ with terminal point $\mathbf{P}_{\mathbf{u,v}} = \underline{\qquad}$

3. Plot and label point $\mathbf{B} = (\mathbf{3}, -\mathbf{2})$ in the **xy**-grid system. State $\overrightarrow{\mathbf{OB}} = \underline{\qquad}$ Sketch, and label it. 4 3 2 1 -4 -3 -2 -1 0 1 2 3 4 5 -1 -2 -3 Sketch the **uv**-grid system with basis vectors $\mathbf{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$. 4. $B_{u,v} =$ _____ Plot and label this **uv**-point. Algebraically, find $\mathbf{B}_{u,v}$ using

 $c_1\mathbf{u}+c_2\mathbf{v}=\overrightarrow{\mathbf{OB}}.$

Express \overrightarrow{OB} in terms of components in the **uv**-grid

 $\overrightarrow{OB}_{uv} =$ _____

The matrix $\mathbf{M} = \begin{bmatrix} 3 & -2 \\ 1 & 2 \end{bmatrix}$ has columns consisting of **u** and **v**. <u>Note</u>: vectors **u**, **v**, \overrightarrow{OF} and $\overrightarrow{OF_t}$ are written using the Standard Coordinate System. Perform matrix multiplication to show the following is true.

$$\mathbf{M} \cdot \overrightarrow{\mathbf{OF}} = \overrightarrow{\mathbf{OF}_{t}}$$
.

In the **xy**-Cartesian System point $\mathbf{E} =$ _____ Draw and label the vector $\overrightarrow{\mathbf{OE}}$ in standard position.

Find the translated point \mathbf{E}_t on the slanted polygon corresponding to the point \mathbf{E} .

 $\mathbf{E}_t =$ _____

Draw and label the vector $\overrightarrow{OE_t}$ in standard position.

Write $\overrightarrow{\mathbf{OE}_{t}} = \begin{bmatrix} \\ \\ \end{bmatrix}_{u,v}$ (in **uv**-grid system with basis vectors $\mathbf{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$)

The matrix $\mathbf{M} = \begin{bmatrix} 3 & -2 \\ 1 & 2 \end{bmatrix}$ has columns consisting of **u** and **v**. <u>Note:</u> vectors **u**, **v**, $\overrightarrow{\mathbf{OE}}$ and $\overrightarrow{\mathbf{OE}_t}$ are written using the Standard Cartesian Coordinate System. Perform matrix multiplication to show the following is true.

$$\mathbf{M} \cdot \overrightarrow{\mathbf{OE}} = \overrightarrow{\mathbf{OE}_{t}}$$