Fenómenos ondulatorios

David Matellano

Departamento de Física y Química. IES Ángel Corella. (Colmenar Viejo)

13 de marzo de 2017

índice de contenidos I

- 1 El principio de Huygens
- 2 Interferencias entre dos ondas
- 3 Difracción de una onda.
 - Difracción por doble rendija.
- Esparcimiento de la luz
- 5 La luz en medios materiales
 - Índice de refracción de un medio material.
- 6 Las leyes de Snell
 - Reflexión total
 - El prisma óptico
- Enlaces a GeoGebraTube

El principio de Huygens Propagación de ondas

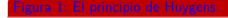
Enunciado

El principio de Huygens

Propagación de ondas

Enunciado

 En un frente de ondas, cada uno de los puntos que lo forman se comporta como un emisor puntual de nuevas ondas. La suma de todas esas ondas dará lugar a un nuevo frente de ondas.



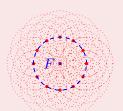
El principio de Huygens Propagación de ondas

Enunciado

 En un frente de ondas, cada uno de los puntos que lo forman se comporta como un emisor puntual de nuevas ondas. La suma de todas esas ondas dará lugar a un nuevo frente de ondas.

Onda esférica

El principio de Huygens


Propagación de ondas

Enunciado

 En un frente de ondas, cada uno de los puntos que lo forman se comporta como un emisor puntual de nuevas ondas. La suma de todas esas ondas dará lugar a un nuevo frente de ondas.

- $\textbf{ Un foco } F \text{ emite un frente de ondas } \\ F_1$
- Cada punto de dicho frente emite ondas secundarias

El principio de Huygens Propagación de ondas

Enunciado

• En un frente de ondas, cada uno de los puntos que lo forman se comporta como un emisor puntual de nuevas ondas. La suma de todas esas ondas dará lugar a un nuevo frente de ondas.

- $\textbf{ Un foco } F \text{ emite un frente de ondas } \\ F_1$
- Cada punto de dicho frente emite ondas secundarias
- Suma de estas creará el nuevo frente de ondas.


El principio de Huygens

Propagación de ondas

Enunciado

 En un frente de ondas, cada uno de los puntos que lo forman se comporta como un emisor puntual de nuevas ondas. La suma de todas esas ondas dará lugar a un nuevo frente de ondas.

- $\textbf{ Un foco } F \text{ emite un frente de ondas } \\ F_1$
- Cada punto de dicho frente emite ondas secundarias
- La suma de estas creará el nuevo frente de ondas.

El principio de Huygens Propagación de ondas

Enunciado

 En un frente de ondas, cada uno de los puntos que lo forman se comporta como un emisor puntual de nuevas ondas. La suma de todas esas ondas dará lugar a un nuevo frente de ondas.

El principio de Huygens

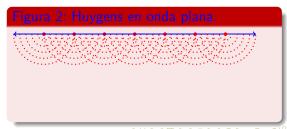
Propagación de ondas

Enunciado

 En un frente de ondas, cada uno de los puntos que lo forman se comporta como un emisor puntual de nuevas ondas. La suma de todas esas ondas dará lugar a un nuevo frente de ondas.

Onda plana

 Una onda plana se propaga a través del espacio.


El principio de Huygens

Propagación de ondas

Enunciado

 En un frente de ondas, cada uno de los puntos que lo forman se comporta como un emisor puntual de nuevas ondas. La suma de todas esas ondas dará lugar a un nuevo frente de ondas.

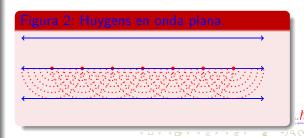
- Una onda plana se propaga a través del espacio.
- Cada punto de dicho frente emite ondas secundarias

El principio de Huygens Propagación de ondas

Enunciado

• En un frente de ondas, cada uno de los puntos que lo forman se comporta como un emisor puntual de nuevas ondas. La suma de todas esas ondas dará lugar a un nuevo frente de ondas.

- Una onda plana se propaga a través del espacio.
- 2 Cada punto de dicho frente emite ondas secundarias
- 1 la suma de estas creará el nuevo frente de ondas.


El principio de Huygens

Propagación de ondas

Enunciado

• En un frente de ondas, cada uno de los puntos que lo forman se comporta como un emisor puntual de nuevas ondas. La suma de todas esas ondas dará lugar a un nuevo frente de ondas.

- Una onda plana se propaga a través del espacio.
- 2 Cada punto de dicho frente emite ondas secundarias
- Suma de estas creará el nuevo frente de ondas.
- A Se renite el proceso sucesivamente

Interferencias entre dos ondas Sean dos focos emisores de ondas coherentes:

Descripción del fenómeno

Interferencias entre dos ondas Sean dos focos emisores de ondas coherentes:

Descripción del fenómeno

• Sean F_1 y F_2 dos focos de ondas coherentes.

Interferencias entre dos ondas Sean dos focos emisores de ondas coherentes:

Descripción del fenómeno

- **1** Sean F_1 y F_2 dos focos de ondas coherentes.
- $oldsymbol{2}$ Interferencia constructiva en P:

Interferencias entre dos ondas

Sean dos focos emisores de ondas coherentes:

Descripción del fenómeno

- **①** Sean F_1 y F_2 dos focos de ondas coherentes.
- ② Interferencia constructiva en *P*:

•
$$d(F_1) - d(F_2) = \Delta x = k \cdot \lambda, \ \forall k \in \mathbb{Z}$$

Interferencias entre dos ondas

Sean dos focos emisores de ondas coherentes:

Descripción del fenómeno

- **1** Sean F_1 y F_2 dos focos de ondas coherentes.
- $oldsymbol{0}$ Interferencia constructiva en P:

•
$$d(F_1) - d(F_2) = \Delta x = k \cdot \lambda, \ \forall k \in \mathbb{Z}$$

3 Interferencia desctructiva en *P*:

Interferencias entre dos ondas

Sean dos focos emisores de ondas coherentes:

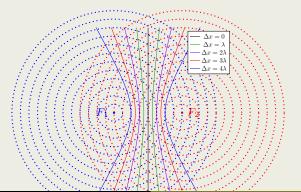
Descripción del fenómeno

- **①** Sean F_1 y F_2 dos focos de ondas coherentes.
- \bigcirc Interferencia constructiva en P:

•
$$d(F_1) - d(F_2) = \Delta x = k \cdot \lambda, \ \forall k \in \mathbb{Z}$$

Interferencia desctructiva en P:

•
$$d(F_1) - d(F_2) = \Delta x = (2k-1) \cdot \frac{\lambda}{2}, \ \forall k \in \mathbb{Z}$$



Ejemplo de interferencias:

Interferencias constructivas

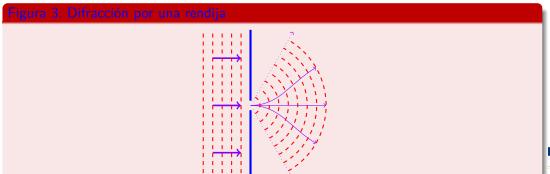
Sean F_1 y F_2 dos focos coherentes

1 Los puntos del plano de interferencia constructiva cumplen: $\Delta x = k \cdot \lambda, \ \forall k \in \mathbb{Z}$

Difracción por doble rendija.

Difracción de una onda Conceptos físicos:

Difracción de una onda



Difracción por doble rendija

Difracción de una onda Conceptos físicos:

Difracción de una onda

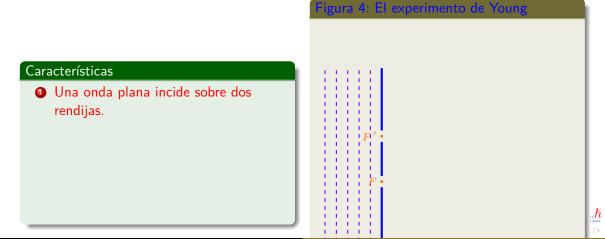
ullet Es un fenómeno ondulatorio que produce una desviación de la onda al pasar junto a un cuerpo *opaco* o al atravesar una rendija de anchura comparable a λ

Difracción por doble rendija.

Un experimento muy importante:(Experimento de Young)

La difracción producida por una doble rendija de anchura a y distancia d

Características



Difracción por doble rendija.

Fenómenos ondulatorios

Un experimento muy importante:(Experimento de Young)

La difracción producida por una doble rendija de anchura a y distancia d

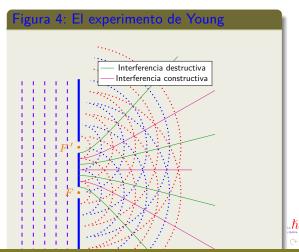
David Matellano

Un experimento muy importante:(Experimento de Young)

La difracción producida por una doble rendija de anchura a y distancia d

Características

- Una onda plana incide sobre dos rendijas.
- Ambas rendijas producen difracción.

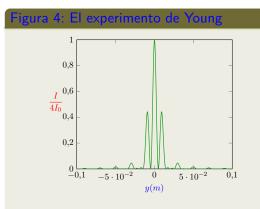


Un experimento muy importante:(Experimento de Young)

La difracción producida por una doble rendija de anchura a y distancia d

Características

- Una onda plana incide sobre dos rendijas.
- 2 Ambas rendijas producen difracción.
- 3 Se produce una interferencia entre ambas ondas.


Difracción por doble rendija.

Un experimento muy importante:(Experimento de Young)

La difracción producida por una doble rendija de anchura a y distancia d

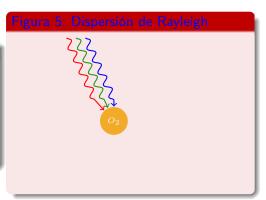
Características

- Una onda plana incide sobre dos rendijas.
- 2 Ambas rendijas producen difracción.
- Se produce una interferencia entre ambas ondas.
- El patrón de interferencia se recoge en una pantalla.

Difracción de Fraunhofer en doble rendija.

Fuentes y pantalla muy lejanas.

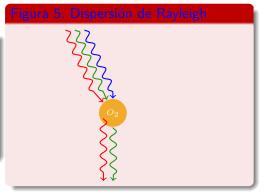
Esparcimiento de la luz ¿Por qué se ve azul el cielo?



Esparcimiento de la luz ¿Por qué se ve azul el cielo?

Dispersión de Rayleigh

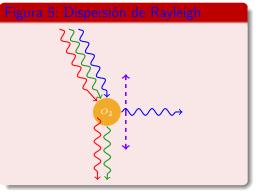
1 La luz blanca incide sobre las moléculas de aire.



Esparcimiento de la luz

¿Por qué se ve azul el cielo?

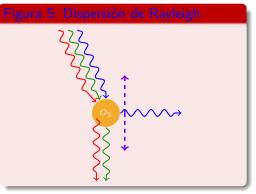
- 1 La luz blanca incide sobre las moléculas de aire.
- 2 Las moléculas capturan fotones energéticos.



Esparcimiento de la luz

¿Por qué se ve azul el cielo?

- 1 La luz blanca incide sobre las moléculas de aire.
- 2 Las moléculas capturan fotones energéticos.



Esparcimiento de la luz ¿Por qué se ve azul el cielo?

- 1 La luz blanca incide sobre las moléculas de aire.
- 2 Las moléculas capturan fotones energéticos.
- El fotón emitido es energético. (azulado violeta)

Índice de refracción de un medio material.

La luz en medios materiales

Definición de índice de refracción

Velocidad de la luz

La luz en medios materiales

Definición de índice de refracción

Velocidad de la luz

1 La luz en el vacío **siempre** viaja con velocidad $c=3\cdot 10^8~m\cdot s^{-1}$

Definición de índice de refracción de un medio (n_1)

La luz en medios materiales

Definición de índice de refracción

Velocidad de la luz

- **1** La luz en el vacío **siempre** viaja con velocidad $c = 3 \cdot 10^8 \ m \cdot s^{-1}$
- 2 En cualquier otro medio material: $v_{luz} < c$

Definición de índice de refracción de un medio (n_1)

La luz en medios materiales

Definición de índice de refracción

Velocidad de la luz

- **1** La luz en el vacío **siempre** viaja con velocidad $c = 3 \cdot 10^8 \ m \cdot s^{-1}$
- 2 En cualquier otro medio material: $v_{luz} < c$

Definición de índice de refracción de un medio (n_1)

ullet Si la luz viaja a través de un medio con una velocidad $v = v_{luz} < c \Rightarrow$

La luz en medios materiales

Definición de índice de refracción

Velocidad de la luz

- **1** La luz en el vacío **siempre** viaja con velocidad $c=3\cdot 10^8~m\cdot s^{-1}$
- 2 En cualquier otro medio material: $v_{luz} < c$

Definición de índice de refracción de un medio (n_1)

- ullet Si la luz viaja a través de un medio con una velocidad $v = v_{luz} < c \Rightarrow$
- $\bullet \ n_1 = \frac{c}{v}$

La luz en medios materiales

Definición de índice de refracción

Velocidad de la luz

- **1** La luz en el vacío **siempre** viaja con velocidad $c = 3 \cdot 10^8 \ m \cdot s^{-1}$
- En cualquier otro medio material: $v_{luz} < c$

Definición de índice de refracción de un medio (n_1)

- Si la luz viaja a través de un medio con una velocidad $v = v_{luz} < c \Rightarrow$
- $n_1 = \frac{c}{}$
 - $n_1 > 1$

La luz en medios materiales

Definición de índice de refracción

Velocidad de la luz

- **1** La luz en el vacío **siempre** viaja con velocidad $c = 3 \cdot 10^8 \ m \cdot s^{-1}$
- 2 En cualquier otro medio material: $v_{luz} < c$

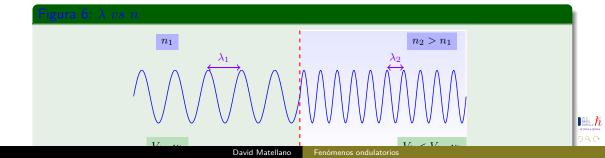
Definición de índice de refracción de un medio (n_1)

- ullet Si la luz viaja a través de un medio con una velocidad $v = v_{luz} < c \Rightarrow$
- $\bullet \ n_1 = \frac{c}{v}$
 - $n_1 > 1$
 - Si P=1 bar y T=273 $K \Rightarrow n_{aire}=1,0002926 \gtrsim 1$

Índice de refracción de un medio material.

Parámetros ondulatorios en medios materiales Velocidad, longitud de onda y frecuencia

Onda electromagnética en un medio de índice de refracción n



Parámetros ondulatorios en medios materiales

Velocidad, longitud de onda y frecuencia

Onda electromagnética en un medio de índice de refracción n

1 La frecuencia se conserva y la velocidad disminuye: $\nu = \nu_0$; $v = \frac{c}{n} < c$



Parámetros ondulatorios en medios materiales

Velocidad, longitud de onda y frecuencia

Onda electromagnética en un medio de índice de refracción n

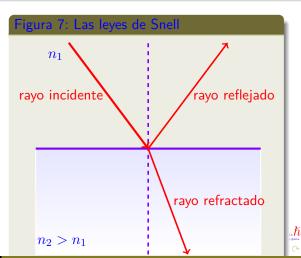
- **1** La frecuencia se conserva y la velocidad disminuye: $\nu = \nu_0; \ v = \frac{c}{-} < c$
- 2 λ disminuye: $\lambda = \frac{v}{\nu} = \frac{c}{\nu \cdot n} = \frac{\lambda_0}{n}$

Reflexión total El prisma óptico

Las leyes de Snell Reflexión y refracción de la luz

Leyes de Snell

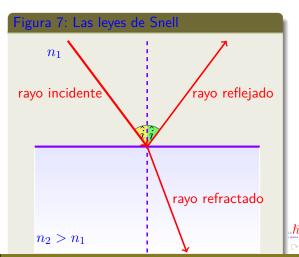
El principio de Huygens Interferencias entre dos ondas Difracción de una onda. Esparcimiento de la luz La luz en medios materiales Las leyes de Snell Enlaces a GeoGebraTube


Reflexión total El prisma óptico

Las leyes de Snell

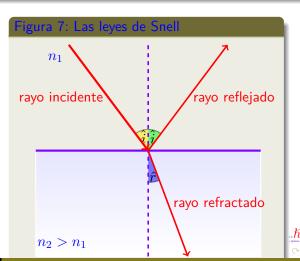
Reflexión y refracción de la luz

Leyes de Snell


Los tres rayos son coplanarios.

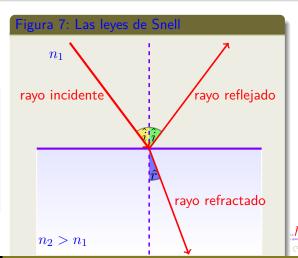
Reflexión y refracción de la luz

Leyes de Snell


- Los tres rayos son coplanarios.
- 2 Los ángulos de incidencia y reflexión son iguales:

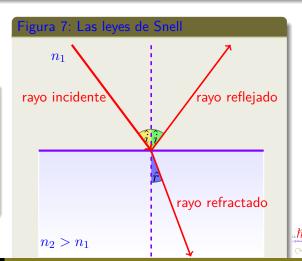
Reflexión y refracción de la luz

Leyes de Snell


- Los tres rayos son coplanarios.
- 2 Los ángulos de incidencia y reflexión son iguales:
- Angulo refractado:

Reflexión y refracción de la luz

Leves de Snell


- Los tres rayos son coplanarios.
- 2 Los ángulos de incidencia y reflexión son iguales:
- Ángulo refractado:
 - $n_1 \cdot \operatorname{sen} \hat{i} = n_2 \cdot \operatorname{sen} \hat{r}$

Reflexión y refracción de la luz

Leyes de Snell

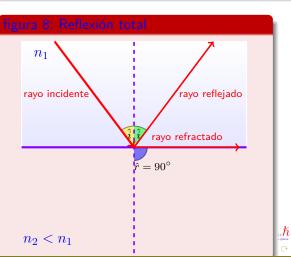
- Los tres rayos son coplanarios.
- 2 Los ángulos de incidencia y reflexión son iguales:
- Ángulo refractado:
 - $n_1 \cdot \operatorname{sen} \hat{i} = n_2 \cdot \operatorname{sen} \hat{r}$
 - Si $n_2 > n_1 \Rightarrow \hat{r} < \hat{i}$

El principio de Huygens Interferencias entre dos ondas Difracción de una onda. Esparcimiento de la luz La luz en medios materiales Las leyes de Snell Enlaces a GeoGebraTube

Reflexión total El prisma óptico

Reflexión total Un fenómeno muy interesante

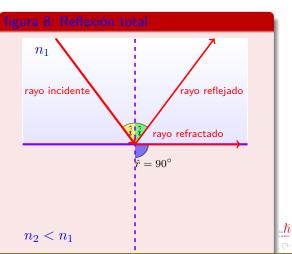
Reflexión total



Reflexión total

Un fenómeno muy interesante

 $\hat{r} = 90^{\circ} \Rightarrow \sin \hat{i} = \frac{n_2}{n_1}$

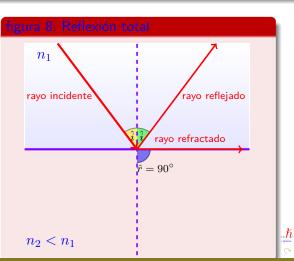


Reflexión total

Un fenómeno muy interesante

Reflexión total

- $\mathbf{1} \quad \hat{r} = 90^{\circ} \Rightarrow \operatorname{sen} \hat{i} = \frac{n_2}{n_1}$
- **2** Sólo es posible si $n_2 < n_1$

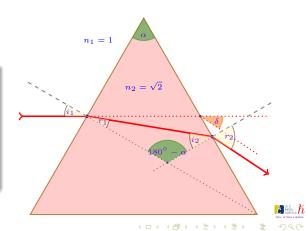


Reflexión total

Un fenómeno muy interesante

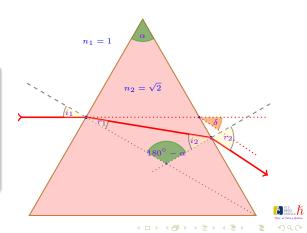
Reflexión total

- $\mathbf{1} \quad \hat{r} = 90^{\circ} \Rightarrow \sin \hat{i} = \frac{n_2}{n_1}$
- 2 Sólo es posible si $n_2 < n_1$
- 3 Se aplica en la fibra óptica.



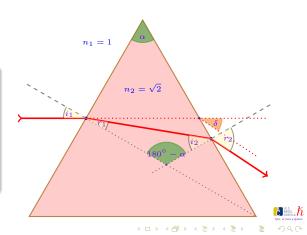
Sea un prisma con un íncide de refracción n

Sea un prisma con un íncide de refracción n


1
$$r_1 + i_2 = \alpha$$

Sea un prisma con un íncide de refracción n

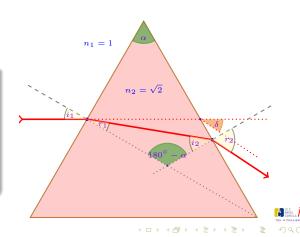
1
$$r_1 + i_2 = \alpha$$


$$n_1 \cdot \operatorname{sen}(i_1) = n_2 \cdot \operatorname{sen}(r_1)$$

Sea un prisma con un íncide de refracción n

1
$$r_1 + i_2 = \alpha$$

$$n_1 \cdot \operatorname{sen}(i_1) = n_2 \cdot \operatorname{sen}(r_1)$$

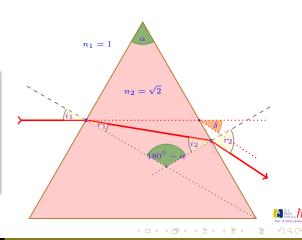


Sea un prisma con un íncide de refracción n

1
$$r_1 + i_2 = \alpha$$

$$2 n_1 \cdot \operatorname{sen}(i_1) = n_2 \cdot \operatorname{sen}(r_1)$$

$$\bullet \quad \delta = i_1 - r_1 + r_2 - i_2 = i_1 + r_2 - \alpha$$


Sea un prisma con un íncide de refracción n

1
$$r_1 + i_2 = \alpha$$

$$n_1 \cdot \operatorname{sen}(i_1) = n_2 \cdot \operatorname{sen}(r_1)$$

$$\delta = i_1 - r_1 + r_2 - i_2 = i_1 + r_2 - \alpha$$

$$\bullet$$
 Si $i_1 = r_2 \Rightarrow \delta = \delta_{minimo}$

Enlaces a GeoGebraTube

Enlaces de interés

- Tema 6: Óptica con GeoGebra: ⇒ https://ggbm.at/XYFgQ3Er
- Leyes de Snell: ⇒ https://ggbm.at/n57M37dN
- Reflexión total: La fibra óptica: ⇒ https://ggbm.at/qHkpKDuS
- Rayo a través de plancha: ⇒ https://ggbm.at/c5HGvJuY
- Prisma óptico: ⇒https://ggbm.at/GAUxEBEH

