Step 1: Open GeoGebra and hide the axes.
Step 2: Create a line through A and B
Step 3: Place a point of intersection C on the line $f(A B)$ on the other side of the circle from B.
Step 4: Place a point D anywhere on the circle.
Step 5: Create a line through A and D
Step 6: Place a point of intersection E and the line g(AD) on the other side of the circle from D.
Step 7: Create segments $h(\mathrm{CA}), i(\mathrm{AB}), k(\mathrm{EA})$, and $j(\mathrm{AD})$.
Your construction should now look like this:

Look at the lengths of the segments h, i, j, and k in the Algebra window at the left of your construction (in the graphics window). What do you notice? \qquad
Move the points A, B, or C around. What do you notice about h, l, j, and k now?
Compare your results with the results of others near you.

Your next conjecture could be: The segments of central angles of a circle are \qquad .

