
  

Revista do Instituto GeoGebra de São Paulo, ISSN 2237- 9657, v.2 n.1, pp.52- 64, 2013                   52              
 

Use of GeoGebra in explorative, illustrative and demonstrative 

moments 
Uso de GeoGebra en los momentos de exploración, ilustración y demostración 

 
_____________________________________ 

AITZOL LASA
1
 

MIGUEL R. WILHELMI
2
 

Abstract 

The aim of this work is to present a set of GeoGebra constructions designed to study 

general properties over triangles, selected from Secondary Education curriculum. In 

one hand, these constructions allow a class management centered on properties, rather 

than on individual examples. On the other hand, there will be a discussion whether 

these constructions help to cross the “inductive-deductive” gap from explanation to 

formal proof in geometry. 
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Resumen 

Se presenta una serie de construcciones con GeoGebra en las cuales se trabajan 

propiedades generales de geometría plana de contenidos propios de Educación 

Secundaria. Por un lado, estas construcciones permiten una gestión de aula centrada 

en las propiedades y no en los ejemplos particulares. Por otro lado, se discute si estas 

construcciones permiten pasar del razonamiento inductivo (explicación) al deductivo 

(demostración formal) en geometría. 

Palabras clave: geometría; ilusión de la transparencia; formación del profesorado; 

demostración formal. 

GeoGebra for instruction of Primary and Secondary School Teachers 

In recent years, GeoGebra (GGB) has displaced Cabri II Plus at Spanish Universities, in 

Primary School Teacher Grades and Secondary School Teacher Masters (LASA, 

SÁENZ DE CABEZÓN and WILHELMI, 2009, 2010). Some motivations are purely 

pragmatic (language, technical and economic) and some others epistemological and 

educational; namely: GGB presents tools for integrated development of notions, 

processes and meanings on Geometry, Algebra and Functions Theory, that highlights the 

essentially relational aspect of mathematics. In addition, since version 4.0, a statistical 

package contributes to its versatility, and the 3D version is on the roadmap for software 

developers. All this justifies why its use is gradually spreading at Primary and 

Secondary schools. 
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Despite these advantages, the widespread use of the program at Secondary Schools is 

far from been a done deal. Therefore, centres for teacher assistance carry out concrete 

activities in order to increase their digital competence in this area. These activities are 

reinforced by those organized by the various GGB Institutes in Spain: discussion forums 

(wiki-GeoGebra), attendance seminars, training courses for teachers and classroom 

activities for students (SÁENZ DE CABEZÓN, LASA and WILHELMI, 2009, 2010). 

Therefore, in this context, it’s pertinent to include GGB at University Education. The 

use of GGB has been adapted to new Primary School Teacher Grades and Secondary 

School Teacher Masters (SSTM). One of the aims of these latest studies is to instruct 

prospective Secondary School teachers on the basic handling of the programme, so they 

can evaluate, use and, ultimately, independently design applets and situations with GGB 

for learning and teaching processes in mathematics. 

1. GGB and illusion of transparency in geometry classroom 

SSTM students within Mathematics speciality must develop geometry topics, among 

others, both for exposure and for solving exercises and theorem proving. GGB has been 

used together with digital whiteboard to complement these developments and visualize 

geometry results related to Secondary School curriculum. 

The use of traditional blackboard in the illustration of geometry contents has the 

obvious limitation of not being able to display more than one example, or a few, of 

geometrical representations during each session. These examples can generate a 

phenomenon of illusion of transparency, i.e., “the phenomenon whereby while teachers 

interpret an example as a model or as a representative of a class, students only see such 

an example”. This phenomenon is an example of the distance in the dynamics of 

construction and communication of mathematics, as scientific knowledge and as a 

crystallized and labeled teaching object at schools. It is therefore essential to identify 

means that allow students and teachers ‘talk the same language’”. How can GGB 

contribute to overcome this phenomenon? i.e., how could GGB shorten the distance 

between the interpretation of an example as an “isolated object” and as a “representative 

of a class”? (LASA and WILHELMI, 2012). Answering these questions is essential in 

any process of generalization, in which intensive (general) and extensive (particular) 

objects are involved. 
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“As a result of a generalization process we obtain a type of 

mathematical object we call intensive object, which becomes the rule 

that generates the class (collection or a set) of generalized objects and 

that enables the identification of particular elements as representative 

of a class (GODINO, FONT, WILHELMI and LURDUY, 2011). 

Through particularization processes new objects are obtained that we 

call extensive (particular) objects. A finite set or collection of 

particular objects simply listed should not be considered as an 

intensive until the subject shows the rule applied to delimit the 

constituent elements of the set. Then the set becomes something new, 

different from the constituent elements, as a unitary entity emerging 

from the set. Therefore, besides the generalization process giving rise 

to the set, there is a process of unitization.” (AKÉ, GODINO, 

GONZATO and WILHELMI, 2013) 

Therefore, generalization processes are complex by nature and specific educational 

decisions may be taken to allow students develop their knowledge from particular 

elements to determination of classes. 

2. Three basic moments to apply GGB 

There are three moments on mathematical activity at Secondary School where the use of 

GGB is pertinent: exploration, illustration and demonstration of a property. On these 

three moments the example-class duality is essential (WILHELMI, GODINO and 

FONT, 2007), since geometric objects are then accepted as models of particular kinds of 

situations. In general, GGB is currently used to illustrate a particular property using an 

example; therefore, explorative and demonstrative moments exceed its principal use. 

2.1.  Exploration 

Dynamic geometry software allows the construction of explorative models for solving 

exercises and problems. These models serve to the purpose of inferring properties from 

a geometric figure or construction so far unknown. 

The goal is to design a construction that satisfies the restrictions of a proposition or the 

initial conditions of a problem. After manipulating the construction, students deduce its 

properties. 
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Normally, these constructions are not made by students. Teachers previously design the 

constructions or take them from a catalogue, such as the Gauss Project 

(http://recursostic.educacion.es/gauss/web/). 

2.2.  Illustration of a property 

As mentioned before, the widespread use of dynamic geometry software –in particular, 

GGB–, consists in giving examples of properties by means of concrete cases selected ad 

hoc. A construction is presented which shows the veracity of a given property. This 

construction serves as a manipulative model and its use may be complemented by a 

digital whiteboard. Thus, for example, to study properties of a triangle, the dynamic 

software can generate multitude of triangles, instead of only a few of them as in the 

ordinary slate. 

This widespread use should motivate new examples that would improve students’ 

confidence in the formulated conjectures. Hölz (2001), cited by Burke and Kennedy 

(2011), states that in an environment of dynamic geometry software, student who 

observe the truth of a conjecture has the urge to know the reason for the claim. After all, 

the illustration of a property is just a “picture” of it. At Secondary Education, material 

and temporal constraints, or student cognitive restrictions may lead to the didactical 

decision of ignoring the formal demonstration of the property, limiting the activity to an 

illustrative presentation of it. However, there may be differences between the illustrative 

construction and formal proofs of these same properties. 

2.3.  Demonstration of a property 

Traditionally, the step-by-step formal proof of a geometrical property it’s carried out on 

blackboard. However, since ordinary blackboards are substituted by digital whiteboards 

and dynamic geometry software, these formal proofs are left out; illustrative 

constructions are not designed considering elements of the formal proof, and 

sometimes, computing steps differ from pure logical reasoning. It’s teacher’s job to 

select situations which permit to join both reasoning; inductive reasoning due to 

dynamic geometry software, and deductive reasoning, traditionally linked to formal 

proofs –pencil and paper proofs. 

Most authors agree that inductive arguments should come first, since this type of 
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reasoning serves to motivate students. In fact, students prefer pragmatic proofs rather 

than intellectual ones (BALLACHEFF, 1987). When assisting a mathematical 

production with a dynamic model, an empirical proof may be enough for students, since 

they can construct an inductive argument with a sufficient number of trials. Therefore, 

students do not have a practice in proving, and don’t see a necessity to justify any 

mathematical process they use (DREYFUS, 1999). In addition, dynamic software such 

as GGB or Sketchpad present an environment where is easy to find counterexamples, 

therefore, the notion of axiom is extended and few propositions require a formal proof; 

if you fail to find a counterexample with the dynamic model, they’re believed to be true 

(DE VILLIERS, 2004). 

In this context, different authors present a number of classifications for roles 

demonstration may play, such us explanation (a statement made to clarify something 

and make it understandable), verbal argument (a process of reasoning, intended to 

convince) or formal proof (mathematic demonstration) (DREYFUS, 1999); there is an 

ultimate role for proof which is usually not considered at school, that is, the role of a 

posteriori systematization, i.e., to organize unrelated results into a unified whole (DE 

VILLIERS, 2004). Actually, one of the challenges in mathematics education is that of 

evaluation, i.e., to evaluate student’s proof-like productions, deciding whether an 

argument is accurate enough to be considered a proof. 

We do not wish to defend the traditional transmission-model. Nevertheless, in this work, 

we will consider demonstration as “a formal proof”. Since it’s clear from literature that 

GGB serves to the purposes of illustration, we would like to make a step forward and 

discuss which characteristics should a GGB construction have in order to aid a formal 

argument. In fact, the aim of section 3 is to present examples of GGB constructions and 

discuss whether they help the articulation of a formal proof. 

3. Examples of GGB constructions in geometry 

In this section we show examples of constructions of the three moments described in the 

previous section. All examples refer to constructions over triangles taken from geometry 

curriculum at Secondary Education. All examples will be given according to the same 

scheme: 
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 Statement. 

 Description of the construction. 

 Utility. 

 Justification or formal proof.  

3.1.  Example of model for experimentation 

 Statement. Given a triangle,     , show that    is a right angle if and only if 

the median length from A equals half the length    of the triangle. 

 Description of the construction. The construction represents the elements of 

the statement (triangle     , median    , segments that define the midpoint 

   on the side a, and the angle   we intend to study) and allows to explore the 

situation. For any disposition of the triangle with obtuse angle  , the median 

length is smaller than half the segment   , while to any disposition of the 

triangle with acute angle  , the median length is greater than half the 

segment   . 

 Utility. The construction helps to make a conjecture. In addition, gives the 

possibility to think a way to prove the property, showing the involved 

elements and certain results that may serve the purpose of completing the 

proof. Figure 1 show two moments of this exploration. After the explorative 

moment, the activity turns to find a logical argument to complete the proof. 

 Justification or formal proof. Suppose    right; given that         , we 

divide angle    in two angles,    and   ; triangles       and       are isosceles, 

having each two equal angles; therefore, segments    ,     and     are of 

equal length, and it follows that point    is in fact the midpoint of the 

segment   . We could reverse the argument to obtain the second implication. 

Figure 

1a: 
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Figure 

1b: 

 

FIGURE 1: Explorative moment 

3.2.  Example of illustration of a property 

 Statement. Given a triangle, if one side is less than another, then the opposite 

angles to each of these sides satisfy the same inequality. 

 Description of the construction. The geometric construction effectively 

explains the property described, but gives no clue to prove the veracity of the 

claim. Text boxes display the change in inequalities for angles, when the 

length of sides satisfies the same inequality (figure 2). 

 Utility. GGB is a handy tool to explain the property, since it allows you to 

create a “numerical” model. However, it gives no clue to justify what is 

observed. 

 Justification or formal proof. When the triangle is equilateral or isosceles, 

clearly,     if and only if    . Suppose then an scalene triangle with 

   . In this case, draw an arc of radius   centered at vertex  , which 

intersects   in   . The triangle       is isosceles, with equal angles     and     

(vertex   on the original triangle corresponds to vertex    on the inner 

triangle). Since       ,         and       , then we get      . 
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Figure 2a: 

 

Figure 2b: 

 

FIGURE 2: Explorative moment 

3.3.  Example of demonstration of a property 

We present three examples of classic constructions with triangles. For each of them, 

we’ll compare the illustrative and demonstrative constructions. 

3.3.1. Intersection of bisectors of a triangle: incenter 

 Statement. The three bisectors of a triangle intersect at a single point, called 

incenter. 

 Description of the construction. The illustrative construction (figure 3a) 

shows elements that participate in the proof of the property. Also, some other 

elements are quoted, which are conclusion of the property. With the help of 

checkboxes to show or hide, as required, the bisectors and their intersections, 

the inscribed circumference, it’s radius to each side of the triangle, and three 
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inner triangles defined by these radii/heights. 

The demonstrative construction (figure 3b) only shows those elements that 

are necessary for the logic proof: two bisectors, through which we conclude 

that the third bisector necessarily have to intersect at the same point where 

the first two do. 

Figure 

3a: 

 

Figure 

3b: 

 

FIGURE 3: Incenter 

 Utility. The illustrative construction is interesting since synthesizes many 

contents concerning the incenter, and shows the relationship between these 

elements. However, in the study of plane geometry, the illustrative 

construction does not always go hand in hand with the formal proof. The 

proof needs formal reasoning, and the austere demonstrative construction 

leads to this path. 

 Justification or formal proof. The bisector of the angle    is equidistant from 

sides   and  ; in turn, the bisector of angle    is equidistant from sides   and 
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 ; therefore, the intersecting point of the two segments,  , is necessarily 

equidistant from sides   and  , and it’s necessarily on the bisector of angle 

  . 

We will not go into details, but a similar situation arises when comparing the illustrative 

and demonstrative constructions associated to the study of the circumcenter and the 

circumcircle (figure 4). 

Figure 

4a: 

 

Figure 

4b: 

 

FIGURE 4: Circumcenter 

3.3.2. Intersection of the medians of a triangle: barycentre 

 Statement. The three medians of a triangle intersect at a single point, called 

barycentre. 

 Description of the construction. The illustrative construction (figure 5a) 
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merely indicates the intersection of the medians and the ratio of the segments 

that are formed, i.e., the barycentre cuts each median into two pieces of ratio 

1:2. In fact, the step of marking the medians according to this ratio belongs 

to the proof and it’s one of the arguments we need to conclude that medians 

do intersect at a single point; it’s not a conclusion that arises from the 

property, as one may think when observing the illustrative construction. The 

proof construction shows otherwise (figure 5b). This second construction 

uses a slider to show, step-by-step, the argument which justifies the fact that 

three medians have to intersect at a single point. 

Figure 

5a: 

 

Figure 

5b: 

 

FIGURE 5: Barycentre 

 Utility. The study of properties of the barycentre of a triangle is an extreme 

example of an illustration that does not correspond to the proof of the 

property. In fact, at Secondary School, they do explain that the barycentre is 

the point of intersection of the three medians of the triangle, without proving 

the truth of that claim. 
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 Justification or formal proof. Let be   the midpoint in segment   and draw 

segment    ; divide segment     into three equal parts,          ; let 

  be the midpoint in segment   ; by Thales,       and       ; we 

conclude that        is a parallelogram;   is the point of intersection of the 

diagonals of the parallelogram, and thus, the midpoint of segment     and 

   ; we conclude that   is the point of intersection of the medians. 

Educational implications 

When working geometry on traditional blackboard, teachers use a geometric drawing or 

diagram to explain the steps of logical reasoning, in order to prove a property. 

With the gradual introduction of dynamic geometry software, we proceed to illustrate 

the geometrical property through a dynamic construct on screen or digital whiteboard. 

The computer construction can skip steps of logical reasoning that justifies the property, 

since the design of the construction is determined by the sequence of tools from the 

computer program. The property “is seen”, and there exists a risk: the dynamic model 

may become a goal instead of a mean; i.e., it has a phenomenon of metacognitive 

slipping (BROUSSEAU, 1997): GGB becomes the finale goal of the teaching process. 

University professors committed in the organization of Mathematical Olympiad tests in 

its various phases, alert of a fact with roots in the use of dynamic geometry software: 

students don’t use anymore Euclidean reasoning, and therefore, they are not able to 

perform geometric formal proofs or arguments requiring several steps because, based on 

their mathematical experience, they don’t have such necessity or instruction. 

Mathematical tasks designed to be solved by dynamic models should contemplate two 

phases. In the first one, a dynamic illustrative model should be used to study the details 

of the problem. The inductive process carried out by dynamic models is essential to 

analyze particular elements, but this activity is partly worthless if no effort is made to 

highlight the element-class duality, i.e., the dynamic model has to open a path of 

reasoning to complete the formal proof of the property. Therefore, in a second phase, 

logical arguments should take a leading role. Otherwise, the property “is seen” but 

remains unproven. 

This involves designing dynamic models which do not only cover the first phase of 

illustration, providing just an inductive proof based on the lake of counterexamples. The 

model should also show the way to prove the property, for which a second GGB 
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construction can be used, probably a simpler one, which indicates the steps of the 

logical demonstration. 
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