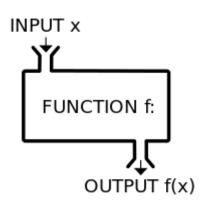


Equations X = 4 + 8Inequalities 1-1>4-6 Function y = 3x - 2

NAME:



Revision of Solving Polynomial Equations

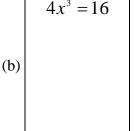
(i) "one term in x"

Examples

Solve:

(a)
$$2-7x=12$$

$$4x^3 = 16$$



(c)

$$\frac{17x}{3} - 5 = 12$$

"more than one term in x" (ii)

Method:

- 1) Get the right hand side to equal zero (=0)
- 2) Eliminate all denominators (where necessary)
- 3) Factorise Left Hand Side
- 4) Use Null Factor Law (NFL)

Factorising

- Quadratic $(ax^2 + bx + c)$
 - o If $b^2 4ac$ (the discriminant, Δ) is:
 - Perfect square, use "criss-cross"
 - Not a perfect square, but positive use the quadratic formula,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

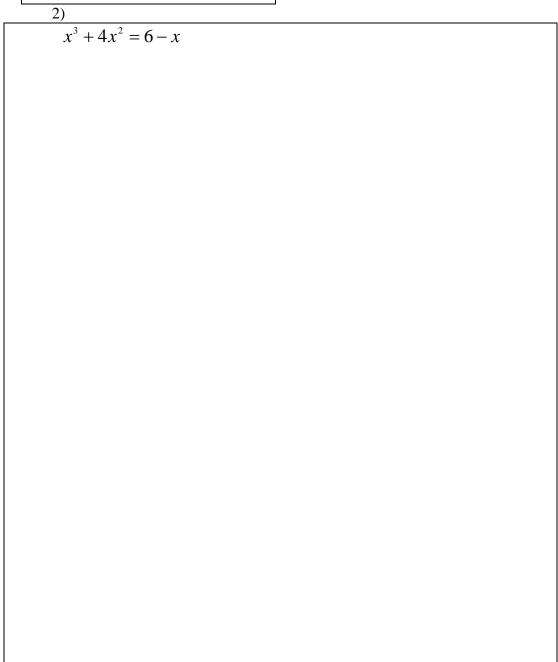
Negative, NO REAL solution

$$\begin{split} &\Delta < 0 \;, \\ &\Delta = 0 \;, \\ &\Delta > 0 \;, \end{split}$$

- **Cubic** $(ax^3 + bx^2 + cx + d)$
 - Use grouping (if possible)
 - o Factor theorem and long division
- Quartic $(ax^4 + bx^3 + cx^2 + dx + e)$
 - Use substitution, eg let $a = x^2$
 - o Factor theorem

Examples: Solve the following for x:

50	ive the following for x .
	$3x^2 - 7x + 2 = 0$
1)	
-/	



$$(3x+2)^2 + 12(3x+2) - 13 = 0$$

3)		

$$x^4 - 2x^2 + 1 = 0$$

5)

$$x^3 + x^2 - 4x - 4 = 0$$

4)

Use iteration to find the solutions to correct to 1 decimal point.

$$x^2 - x - 5 = 0$$

- Questions: 22 question sheet. (see Below)
- Check using solve command on Ti-NSpire

Solving Polynomial Equations – "20 Question Sheet"

- "one term in x"
- "> 1 term in x"

Solve the following:

Ouestion

1.
$$5-3x=16$$

2.
$$1 - \frac{1}{x^2} = 0$$

3.
$$3x^5 = 96$$

4.
$$7x^5 = 200 + 6x^5$$

5.
$$\frac{2x}{3} - \frac{3}{4} = \frac{5}{6}$$

6.
$$x-5+\frac{4}{x}=0$$

7.
$$2x^2 = 8x + 64$$

8.
$$x^2 + 8x + 8 = 0$$

9.
$$-2x^2 - 6x = 1$$

10.
$$5x^2 + 2x + 1 = 0$$

11.
$$x^3 + 4x^2 + x = 6$$

12.
$$4x^3 + 12x^2 - x - 3 = 0$$

13.
$$x^4 + x^2 - 2 = 0$$

14.
$$x^4 - 14x^2 = -1$$

15.
$$x^4 + x^3 - 7x^2 - x + 6 = 0$$

16.
$$(3x+1)^2 = 3x+1$$

17.
$$x^2 + 1 + \frac{2}{x} = 0$$

18.
$$x^2 = \frac{x}{1+2x^2}$$

19.
$$6(x^3 - x^5) = 0$$

20.
$$\frac{1}{3}(x+1)^4(5-2x)+2=2$$

Hint

-

Eliminate the denominator

-

Collect like terms, answer to 4 d.p Eliminate denominators in one 20

Eliminate denominators in one go

-

(i) exact answer

(ii) correct to 3 d.p. Correct to 3 d.p.

-

Make RHS=0, then factor theorem

Grouping is quicker

Let $a = x^2$

Make RHS=0, let $a = x^2$, ans. to 3 d.p.

Grouping two and three

Let a = 3x + 1

Eliminate denominator then factor

theorem

Eliminate denominator then let $a=x^2$

Eliminate constant, HCF

Eliminate constants

For the following use iteration to find solutions correct to 1 decimal place (1 d.p)

21.
$$x^2 + x - 7 = 0$$

22.
$$x^3 + x - 5 = 0$$

Completing The Square

Completing the square allows a quadratic of the form $y = ax^2 + mx + n$, to be written in the Turning Point form, $y = a(x-b)^2 + c$.

2)

Examples: Express the following in the Turning Point form $y = a(x-b)^2 + c$.

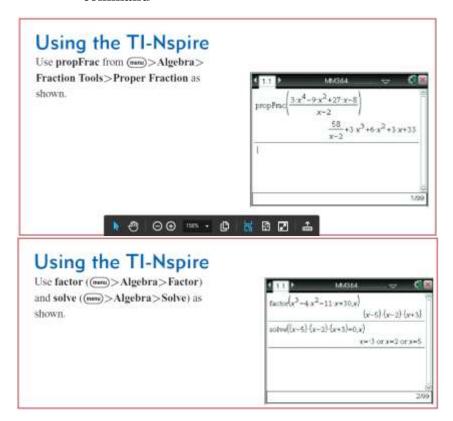
 $y = x^2 + 4x + 1$

 $y = x^2 - 3x + 1$

 $y = -3x^2 - 12x - 7$

3)

- Ex 4A Q 2, 4 (Only Complete the Square)
- CAS Calculator: expand command to check answers & the Complete The Square command



Factor Theorem

Examples

1) Without performing long division, find the remainder when $2x^3 - 8x + 11$ is divided by (x+3).

Let $P(x) = 2x^3 - 8x + 11$

2) Find "a", given that when $x^3 - 2x + a$ is divided by (x - 2) the remainder is 7.

 $Let \quad P(x) = x^3 - 2x + a$

Rational Root Theorem

- Sometimes there are no integer solutions to a polynomial, but there maybe rational solutions.
- e.g. if $P(x) = 2x^3 x^2 x 3$, we can show $P(1) \neq 0$, $P(-1) \neq 0$, $P(3) \neq 0$, $P(-3) \neq 0$.
- So there is no integer solution.
- So next we try $P\left(\frac{3}{2}\right)$, $P\left(-\frac{3}{2}\right)$, $P\left(\frac{1}{2}\right)$ & $P\left(-\frac{1}{2}\right)$ and will discover $P\left(\frac{3}{2}\right) = 0$ therefore (2x 3) is a factor of P(x).
- Unsure of signs then solve the equation 2x 3 = 0 for .

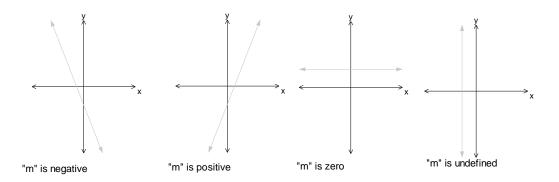
Example: Use the Rational-root theorem to help factorise $P(x) = 3x^3 + 8x^2 + 2x - 5$

 $P(x) = 3x^3 + 8x^2 + 2x - 5$ $P(1) = P(-1) = P(5) = P(-5) = P(-\frac{5}{3}) = P(-\frac{5}{3}$

So () is a factor.

Straight Lines/Simultaneous Equations

- The gradient of a straight line is always constant.
- Gradient $m = \frac{rise}{run} = \frac{y_2 y_1}{x_2 x_1}$



- Distance between 2 points: $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$ (Pythagoras)
- Midpoint, M, of two points is given by $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
- If m_1 is the gradient of a straight line and m_2 is the gradient of another straight line...
 - If the two lines are parallel then $m_1 = m_2$
 - o If the two lines are perpendicular then $m_1 \times m_2 = -1$ or $m_1 = \frac{-1}{m_2}$

Equation of a straight line:

- To find the equation of a straight line, you need:
 - The gradient (m) and the Y-intercept (c), then use y = mx + c
 - O The gradient (m) and the coordinates of one point on the line (x_1, y_1) then use y = mx + c or $y y_1 = m(x x_1)$.
 - The coordinates of two points on the line (x_1, y_1) and (x_2, y_2) , and then use $m = \frac{y_2 y_1}{x_2 x_1}$, then use y = mx + c or $y y_1 = m(x x_1)$.

Example: Find the equation of the line passing through (-2, -3) and (2, 5).

Let $(x_1, y_1) = (-2, -3)$ and $(x_2, y_2) = (2, 5)$

• Ex2C Q 1, 2, 3, 5, 10, 11, 12, 13, 14, 16, 23

Simultaneous Equations

- 3 situations
 - No solutions
 - o Infinitely many solutions
 - o A unique solution
 - 1. No solution
 - Means the lines are parallel
 - They have the same gradient but a different Y-intercept
 - e.g. 2x + y = 2 & 2x + y = 5
 - 2. Infinitely many solutions
 - Means you have the same line
 - e.g. 2x + y = 2 & 4x + 2y = 4
 - 3. A unique solution
 - Means the lines are different and meet at one point only.
 - e.g. 2x + y = 2 & x + y = 5

Example 1: Explain why the following pair of simultaneous equations have no solutions

$$2x + 3y = 6$$
 & $4x + 6y = 24$

Example 2:

Consider the system of simultaneous equations given by:

$$mx + y = 2$$

$$2x + (m-1)y = m$$

Find the value(s) of m for which there is no solution.

Note: For a unique solution the determinant $\neq 0$. For the above example:

$$m(m-1) - 2 \neq 0$$
...
$$(m-2)(m+1) \neq 0$$

$$m \neq -1, 2$$

=> the values of m for which there is a unique solution, $m \in \mathbb{R} \setminus \{-1, 2\}$

Simultaneous Linear Equations Worksheet

1. Consider the system of simultaneous linear equations given by

mx + 12y = 24

(m+1)x + 2y = 0

(a) 3x + my = m

(b) 4x + (m-1)y = m

Find the value(s) of m for which there is a unique solution.

2. Consider the system of simultaneous linear equations given by

(a) (m-1)x + 5y = 73x + (m-3)y = 0.7m

(b) (m-3)x - 5y = -2 2x - (2m+2)y = -4

Find the value(s) of m for which there are infinitely many solutions.

3. Consider the system of simultaneous linear equations given by

(a) mx + 2y = 63x + (m-1)y = 6 (b) 5x + (m-3)y = 1mx + 2y = m

Find the value(s) of m for which there is no solution.

Answers:

$$_{1 \text{ (a)}} m \in R \setminus \{-6, 6\}$$

(b)
$$m \in R \setminus \{-3, 3\}$$

2 (a)
$$m = 6$$

(b)
$$m = 4$$

3 (a)
$$m = -2$$

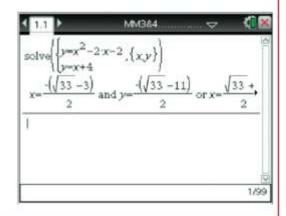
(b)
$$m = -2, 5$$

• Ex 2F 3, 4, 5, 6

Using the TI-Nspire

Use the simultaneous equation template ((menu)>Algebra>Solve System of Equations>Solve System of Equations) and complete as shown.

Use the **up arrow** (**a**) to move up to the answer and use the **right arrow** (**b**) to display the remaining part of the answer.



Using the TI-Nspire

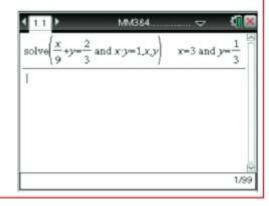
Use (menu)>Algebra>Solve to solve as shown.

Note that the multiplication sign is required between *x* and *y*.

The simultaneous equation solver template

((monu)>Algebra>Solve System of

Equations>Solve System of Equations) could also have been used in this example.



Sets

Notation

- A set is a collection of objects
- The objects are known as elements
 - o If x is an element of A, $x \in A$
 - $y \notin A \Rightarrow y$ is not an element of A or
 - 2 ∉ the set of odd numbers
- If something is a subset of A, for example B, $B \subseteq A$. (Boys in the Year 12 Methods class is an example of a subset)
- If 2 sets have common elements, it is called an intersection (\cap) ie $A \cap B$.
- Ø it the empty set.
- \cup , union, $A \cup B$ is the set of elements that are either in A or B.
- The **set difference** of two sets *A* and *B* is given by $A \setminus B = \{x: x \in A, x \notin B\}$. Means what's in *A* but not in *B*.

Example

If
$$A = \{1,2,3,7\}$$
 and $B = \{3,4,5,6,7\}$

(i) Find (a)
$$A \cap B$$
 (b) $A \cup B$ (c) $A \setminus B$ (d) $B \setminus A$

(a)
$$A \cap B =$$

(b)
$$A \cup B =$$

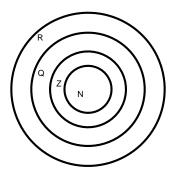
$$(c) A \setminus B =$$

$$(d) B \setminus A =$$

- (ii) True or False
- (a) $3 \in A$
- (b) $5 \in A$
- (c) 6 ∉ B
- $(d){4,5}\subseteq A$
- (e) $\{4,5\} \subseteq B$

Sets of Numbers

- N, the set of Natural Numbers {1, 2, 3, 4,} is a subset of...
- **Z**, the set of Integers {...,-2, -1, 0, 1, 2,} is a subset of...
- Q, the set of Rational numbers, numbers which can be expressed in the form $\frac{m}{n}$ is a subset of...
- **R**, the set of Real numbers
- $N \subseteq Z \subseteq Q \subseteq R$
- **Q**', is the set of irrational numbers, eg, $\sqrt{2}, \pi, e$



Subsets of the Real numbers

Set	Interval	Number Line
$\{x: a < x < b\}$	(a, b)	<+ + + + + + + + + + + + + + + + + + +
$\{x: a \le x < b\}$	[a, b)	<+ + + 1 + + + + + + + + + + + + + + + + + + +
$\{x: a < x \le b\}$	(a, b]	<+ + +
$\{x: a \le x \le b\}$	[a, b]	<
$\{x: x > a\}$	(a, ∞)	<⊢ + + ⊕
$\{x: x \ge a\}$	[a, ∞)	<+ + + ← + + + + + + ← a
{x: x < a}	(-∞, a)	4
$\{x: x \le a\}$	(-∞, a]	♦

Example: Complete:

	Set	Interval	Number Line
A	{ <i>x</i> : <i>x</i> >2}		
В		[-2,3]	
С			
			-5-4-3-2-10 1 2 3 4 5
D		(-∞, 5]	
Е			◆
F		R^{+}	
G	${x: x < 0}$		
Н		$R \setminus \{0\}$	

[•] Exercise 1A Q 1, 2, 3, 4, 5, 6, 7, 8, 9

Relations and Functions

Definition of a function

- Any relation in which no two ordered pairs have the same first element (ie x value).
 - The x value is only used once
 - \circ {(1,2), (2,4), (3,6), (4,8)} is a function
 - \circ {(-2,0), (-1, -3), (-1, 3), (0,-2), (0,2)} is not a function
- A function is a relation with one-to-one correspondence or many-to-one correspondence.
- Eg of that:
- Functions are a subset of relations (one-to-many or many-to-many)
- If a relation is represented graphically, apply a "vertical line" test to decide whether it is a function or not
 - Cuts the graph once function
 - O Cuts the graph more than once not a function
- The first elements of the ordered pair in a function makes the set called the *DOMAIN*.
- The second elements make the set called the *RANGE*.
- Some other terms used: Image (y), pre-image (x), $(x, y) \in f$

Notation for description of a Function

- $f: R \to R$, $f(x) = 3x^2$
- f is the name of the function (use f, g, h)
- R is the domain (be careful for restrictions of the domain)
- $\rightarrow R$ is the possible values that the domain can map onto (it is not the actual range)
- $f(x) = 3x^2$ represents the rule

Example: Rewrite the following using the function notation $\{(x, y): h(x) = 5x^2 + 7, x > -2\}$

Example: For the function with the rule $g(x) = 4x^2 + 5$, evaluate:

- (i) g(2)
- (ii) g(-3)
- (iii) g(0)

- (iv) g(a)
- (v) g(x+h)
- (vi) g(x)=9

• Ex1B Q 1, 2 cef, 3, 4, 5, 6, 7, 8, 9cde, 10, 11, 12abc, 13, 14, 15, 16

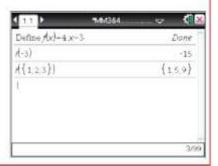
Using the TI-Nspire

Function notation can be used with a CAS calculator.

Use \bigcirc >Actions>Define to define the function f(x) = 4x - 3.

Type f(-3) followed by **enter** to evaluate f(-3).

Type $f(\{1, 2, 3\})$ followed by **enter** to evaluate f(1), f(2) and f(3).

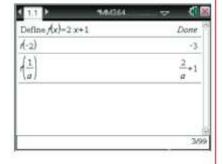


Using the TI-Nspire

Use f(x) > Actions > Define to define the function f(x) = 2x + 1.

Type f(-2) followed by **enter** to evaluate f(-2).

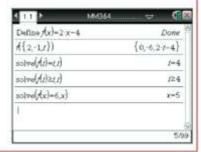
Type $f\left(\frac{1}{a}\right)$ followed by **enter** to evaluate $f\left(\frac{1}{a}\right)$.



Using the TI-Nspire

Use ______>Actions>Define to define the function and _______>Algebra>Solve to solve as shown.

The symbol \geq can be found using m+= and select \geq or use m+mm> **Symbols**. On the Clickpad (grey handheld) you can use m+> or >=.

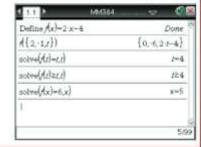


Using the TI-Nspire

Use memo > Actions > Define to define the function and memo > Algebra > Solve to solve as shown.

The symbol ≥ can be found using ⊕+⊕ and select ≥ or use ⊕+(mm)>Symbols.

On the Clickpad (grey handheld) you can use ⊕+⊗ or ⊗(e).



One to One Functions

- **VERTICAL LINE TEST** to see if we have a function
- HORIZONTAL LINE TEST to see if we have a one-to-one function
- Examples:
 - o Parabola
 - o Cubic
 - o Exponential

Implied domains

- Often the domain is not stated for a function.
- Assume the domain is to be as large as possible (i.e. select from *R*)
- Examples:
 - \circ $y = 3x^2$, the implied domain is _____
 - \circ $y = \sqrt{x}$, the implied domain is _____
 - $\circ \quad y = \sqrt{x-2} ,$
 - $\circ \quad y = \sqrt{2 x} \;,$
 - $\circ \quad y = \frac{1}{x},$
 - $\circ \quad y = \frac{4}{2 x},$
 - o $y = \sqrt{x^2 7x + 12}$, look at graph of parabola,
 - $\circ y = \frac{1}{x^2 7x + 12},$
- Ex 1C Q 1, 2, 3, 4, 5, 6, 7, 8

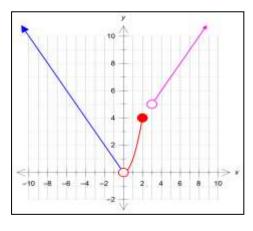
Hybrid functions (Piecewise functions)

• A function which has <u>different rules</u> for <u>different subsets</u> of the domain.

Example: Sketch the graph of:

$$f(x) = \begin{cases} -x, & x < 0 \\ x^2, & 0 < x \le 2 \\ x + 2, & x > 3 \end{cases}$$

and state the domain and range.



Domain = Range =

For the above function find:

- (a)
- f(-4)
- (b) f(1)
- (c) f(2a)

(a)

(b)

(c)

$$(ii)$$

$$(iii)$$

$$f(2a) = \begin{cases} \\ \end{cases}$$

• *Ti-NSpire*: From the templates, select the hybrid with 3 choices. (see p18 of text).

Odd & Even Functions

• An odd function is defined by:

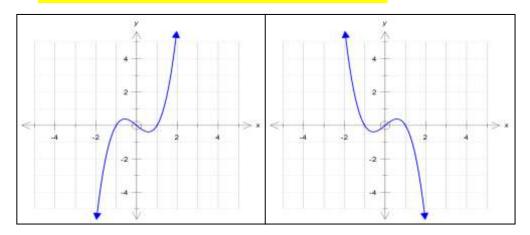
$$f(-x) = -f(x)$$

$$if \quad f(x) = x^3 - x$$

$$\Rightarrow f(-x) = (\dots)^3 - (\dots)$$

$$f(-x) = = = \dots$$

This is the TEST to see if a function is ODD or EVEN



- Can also consider an Odd function has 180° rotational symmetry about the origin.
- An even function is defined by:

$$f(-x) = f(x)$$

$$if \quad f(x) = x^2 - 1$$

$$\Rightarrow f(-x) = (\dots)^2 - \dots$$

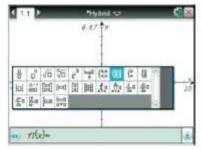
$$f(-x) = \dots$$

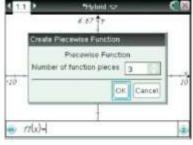
$$\vdots$$

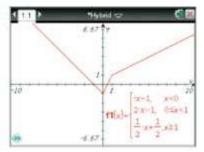
• Ex 1C Q 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19

Plotting hybrid functions

In a Graphs application with the cursor in the entry line, select the hybrid (piecewise) function template, (a) (a) + (b) on the Clickpad) and enter as shown.







Sums and Products of Functions

Example: If $f(x) = \sqrt{x-2}$ and $g(x) = \sqrt{4-x}$ find:

- (a) (f + g)(x)
- (b) (f+g)(3)
- (c) (fg)(x)
- (d) (fg)(3)

(a)
$$(f+g)(x) = f(x) + g(x) =$$

Implied domain for f = [) and the implied domain for g = [\Rightarrow only defined domain for f + g = [

(b)
$$(f+g)(3) =$$

(c)
$$(fg)(x) = f(x) \times g(x) =$$

$$(d)$$
 $(fg)(3) =$

Graphing by Additions of Ordinates

This involves the addition of the *y*-values of the given equations.

For example, if $f(x) = \sqrt{x}$ and g(x) = 1 - x the graph of y = f(x) + g(x) is obtained by adding the y-values for every value of x for which both curves simultaneously exist.

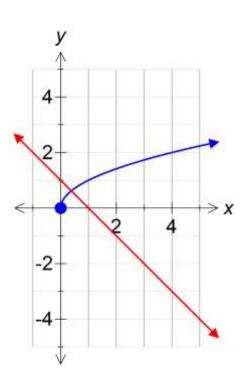
For
$$f(x) = \sqrt{x}$$
 the domain is $[0, \infty)$

For
$$g(x) = 1 - x$$
 the domain is $(-\infty, \infty)$

Therefore, the values of x for which both curves are defined simultaneously is given by $[0,\infty)$

Sketch the two graphs above, on graph paper, see blackboard for specific instructions.

Adding the *y*-values is straight forward as long as you know the equations of the graphs. However, you need to be able to add two graphs without this information.



Hints: when using the addition of ordinates.

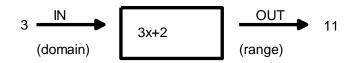
- 1. Look for regions where both graphs are positive (ie both lie above the *x*-axis) (this means that when you add the *y*-values, you will obtain a larger positive *y*-value)
- 2. Look for regions where both graphs are negative (ie both lie below the *x*-axis) (this means that when you add the *y*-values, you will obtain a more negative *y*-value)
- 3. Consider the regions where the graphs differ in sign and then be discerning in where the sum of the two values lie.
- 4. Look for asymptotic behaviour.

If you are asked to find f(x) - g(x), it is easier to sketch f(x) + (-g(x)), that is, reflect g(x) in the x-axis and continue as above.

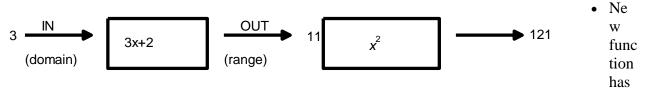
• Ex1D Q 1, 2, 3, 4, 6, 8a, 10, 12

Composite functions

• Think of a function machine, eg f(x) = 3x + 2 and find f(3).

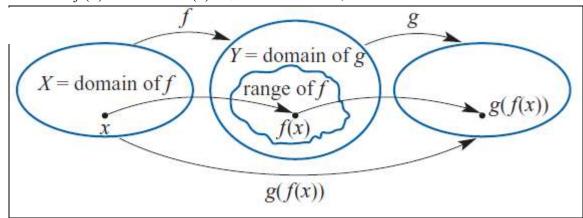


• What happens if we use 2 machines, eg f(x) = 3x + 2 and $g(x) = x^2$



been defined, h(x), $h(x) = (3x + 2)^2$

- h(3) = 121 or h(3) = g(f(3)) = g(11)
- h(-2) = g(f(-2)) = g(-4) = 16
- $\Rightarrow h$ is said to be the composition of g with f.
- $h = g \circ f$ or h(x) = g(f(x))
- The domain of h or h(x) is the domain of f.
- Consider f(x) = x 3 and $h(x) = \sqrt{x}$. When x = 4, x = 2



Example: Find both $f \circ g$ and $g \circ f$, stating the domain and range of each, if $f: R \to R$, f(x) = 2x - 1 and $g: R \to R$, $g(x) = 3x^2$.

	Domain	Range
f		
g		

$$f \circ g =$$

$$=$$

$$=$$

$$dom \ f \circ g =$$

$$ran \ f \circ g =$$

$$g \circ f =$$
 $=$
 $dom \ g \circ f =$
 $ran \ g \circ f =$

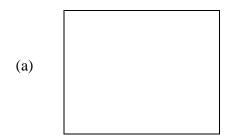
- $f \circ g$ is defined since _____
- $g \circ f$ is defined since _____

Example 2: If $g(x) = 2x - 1, x \in R$ and $f(x) = \sqrt{x}, x \ge 0$

(a) state which of $f \circ g$ and $g \circ f$ is defined

(b) state the domain and rule of the defined.

	Domain	Range
f		
g		

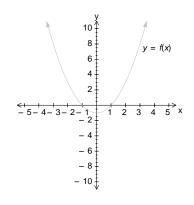


(b)

Example 3: for $f(x) = x^2 - 1$ and $g(x) = \sqrt{x}$,

- (a) Is (i) $g \circ f$ defined, (ii) $f \circ g$ defined?
- (b) Determine a restriction for f, f^* , so that $g \circ f^*$ is defined.

	Domain	Range
f		
g		

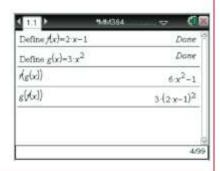


(b)

• Ex1E Q 1a - e, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12

Using the TI-Nspire

Define f(x) = 2x - 1 and $g(x) = 3x^2$. The rules for $f \circ g$ and $g \circ f$ can now be found using f(g(x)) and g(f(x)).



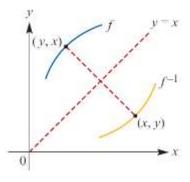
Inverse Functions

The Inverse of a function

$$y = f^{-1}(x)$$

For the function y = f(x)

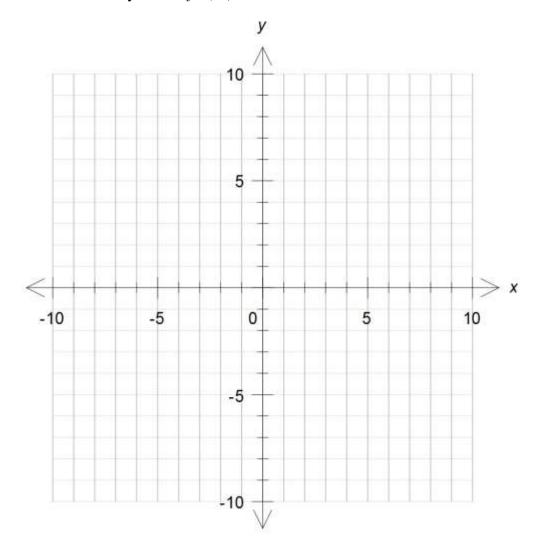
- The graph of its inverse $y = f^{-1}(x)$ is found by reflecting the original in the line y = x.
- The rule of its inverse is found by swapping x for y (and then making y the subject of the equation.



Example: For the function

$$f: [-1, 3] \to R \text{ where } f(x) = 3x - 2$$

- a. Sketch the graph of f;
- b. Sketch the graph of y = x;
- c. Using the line y = x as the "mirror" reflect the graph of f in it;
- d. Find the domain and range for f and its inverse f^{-1} ;
- e. Find the rule for $f^{-1}(x)$;
- f. Fully define $f^{-1}(x)$.



To find the rule for the inverse we swap the x and y in the original equation.

fully defined:
$$f^{-1}:[,] \rightarrow R, f^{-1}(x) =$$

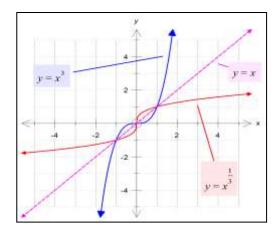
- The domain of $f = \operatorname{range} f^{-1}$ and $\operatorname{range} f = \operatorname{domain} f^{-1}$
- If the graphs intersect, then the points of intersection MUST also be on the line y = x.
- So the points of intersection can be found in 3 ways:

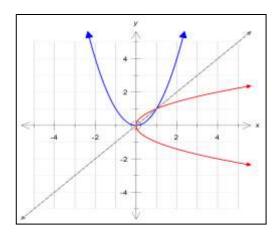
$$\circ f(x) = f^{-1}(x)$$

$$\circ \quad f(x) = x$$

$$\circ \quad f^{-1}(x) = x$$

- It is usually quicker and easier to use one of the last two.
- All functions have inverses, but the inverses may not be functions (they may only be relations).
- e.g. compare $y = x^3$ and $y = x^2$



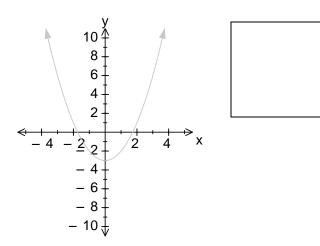


- Original is a function
- Inverse is a function

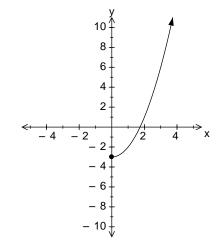
- Original is a function Inverse is not a function
- A function f , has an inverse function, written f^{-1} only if f is a one-to-one function.
- i.e. a horizontal and a vertical line only crosses the graph of f once.

It is possible to restrict the domain on a function, so it will have an inverse function, e.g. $f(x) = x^2$, the domain can be restricted in many ways, e.g $R^+ \cup \{0\}, [2,10), (-\infty,0], [-5,-1]$

Example: Restrict the domain of $g(x) = x^2 - 3$, so that we have an inverse function $g^{-1}(x)$. Find the two possible $g^{-1}(x)$, where the domain is as large as possible.



• Let's choose the RHS of the curve, i.e $x \ge 0$



$$g(x) = x^{2} - 3$$

$$Let \ y = x^{2} - 3$$

$$swap \ x \& y$$

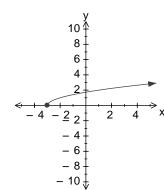
$$x =$$

$$=$$

$$=$$

$$y = or y =$$

which one is g^{-1} ?



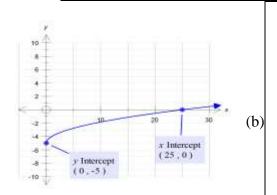
 $domain: [-3,\infty)$ domain: $[-3,\infty)$ $range: [0, \infty)$ $range: (-\infty,0]$

- As the dom $g = ran g^{-1}$ & $ran g = dom g^{-1}$ then $g^{-1}(x) = +\sqrt{x+3}$.
- $\Rightarrow g^{-1}:[-3,\infty) \rightarrow R, g^{-1}(x) = \sqrt{x+3}$
- If we used the LHS of the curve, then $\Rightarrow g^{-1}:[-3,\infty) \rightarrow R$, $g^{-1}(x) = -\sqrt{x+3}$

Example: If $h: S \to R$, $h(x) = \sqrt{x} - 5$, find:

- (a)
- (b)
- (c)
- $h^{-1}(-2)$
- (d) $h^{-1}(-7)$

(a) S is the domain, dom h = [,) and ran h = [,)



$$h(x) = \sqrt{x} - 5$$

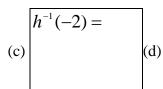
Let $y = \sqrt{x} - 5$

$$=\sqrt{}$$

$$=\sqrt{}$$

$$\Rightarrow h^{-1}(x) =$$

$$h^{-1}:[$$
 $) \rightarrow R, h^{-1}(x) =$

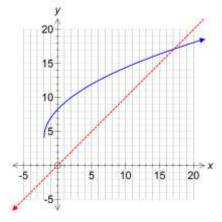


$$h^{-1}(-7)$$

Example

Find the inverse of the function with rule $f(x) = 3\sqrt{x+2} + 4$ and sketch both functions on one set of axes, clearly showing the exact coordinates of intersection of the two graphs.

Solution



Note: The graph of f^{-1} is obtained by reflecting the graph of f in the line y = x.

The graph of $y = f^{-1}(x)$ is obtained from the graph of y = f(x) by applying the transformation $(x, y) \rightarrow (y, x)$.

In this particular example, it is simpler to solve $f^{-1}(x) = x$ to solve the point of intersection.

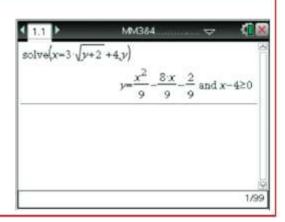
Graphical Calculator can be used to find the inverse of a function

- o Define the function
- \circ Solve(f(y)=x, y)

• Ex1F Q 1, 2, 3, 4, 6, 7, 8aceg, 9, 10, 11, 12, 13, 14, 15

Using the TI-Nspire

To find the rule for the inverse of $y = 3\sqrt{x+2} + 4$, enter solve $(x = 3\sqrt{y+2} + 4, y)$.



Power Functions

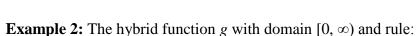
• Power functions are of the form: $f(x) = x^p$; $p \in Q$ (i.e. p is rational)

Strictly increasing and strictly decreasing functions

- A function f is said to be *strictly increasing* when a < b implies f(a) < f(b) for all a and b in its domain
- If a function is strictly increasing, then it is a one-to-one function and has an inverse that is also strictly increasing.

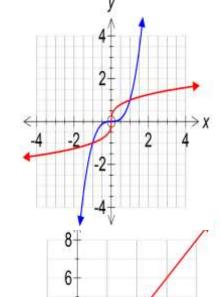
Example 1: The function $f: R \to R$, $f(x) = x^3$ is strictly increasing with zero gradient at the origin.

The inverse function $f^{-1}: R \to R, f^{-1}(x) = x^{\frac{1}{3}}$, is also strictly increasing, with a vertical tangent of undefined gradient at the origin.



$$g(x) = \begin{cases} x^2 & 0 \le x \le 2\\ 2x & x > 2 \end{cases}$$
 is strictly increasing, and is not

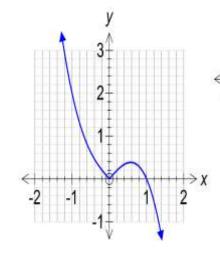
differentiable at x = 2.



Example 3: Consider $h: R \to R, h(x) = |x| - x^3$

H is not strictly increasing, But is strictly increasing over the

interval
$$\left[0, \frac{1}{\sqrt{3}}\right]$$
.



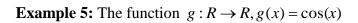
Strictly Decreasing

A function f is said to be *strictly decreasing* when a < b implies f(a) > f(b) for all a and b in its domain.

A function is said to be strictly decreasing over an interval when a < b implies f(a) > f(b) for all a and b in its interval.

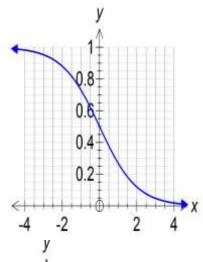
Example 4: The function $f: R \to R, f(x) = \frac{1}{e^x + 1}$

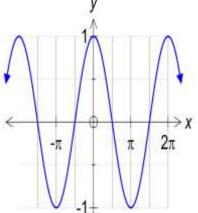
The function is strictly decreasing over R.



g is not strictly decreasing.

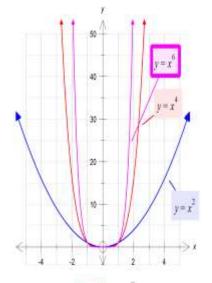
But g is strictly decreasing over the interval $[0, \pi]$.



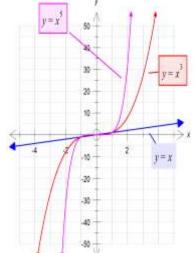


Power functions with positive integer index

- Functions of the form: $f(x) = x^p$; p = 1, 2, ...
- 2 groups: the even powers and the odd powers.
- **Even powers**, $f(x) = x^2, x^4, x^6,...$
 - o All have the "U-shaped" graph
 - o Domain: R
 - o Range: $R^+ \cup \{0\}$ or $[0, \infty)$
 - \circ Strictly increasing for x.....
 - \circ Strictly decreasing for x......
 - o As $x \to \pm \infty$, $f(x) \uparrow \infty$



- **Odd powers**, $f(x) = x, x^3, x^5,...$
 - o All slope from bottom left to top right
 - o Domain: R
 - o Range: R
 - o Strictly increasing for
 - \circ F is one-to-one
 - o As $x \to +\infty$, $f(x) \to \infty$ & $x \to -\infty$, $f(x) \to -\infty$



Power functions with negative integer index

- Functions of the form: $f(x) = x^p$; p = -1, -2,...
- 2 groups: the even powers and the odd powers.

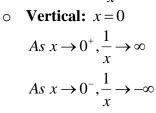
Odd Negative Powers

Functions of the form: $f(x) = x^p$; p = -1, -3,...

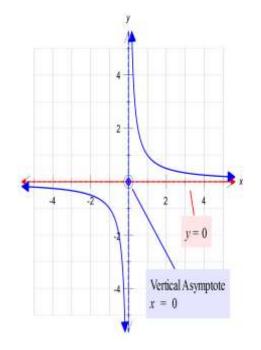
- Sketch the graph of $f(x) = \frac{1}{x} or = x^{-1}$
- Domain:
- Range:
- Asymptotes:

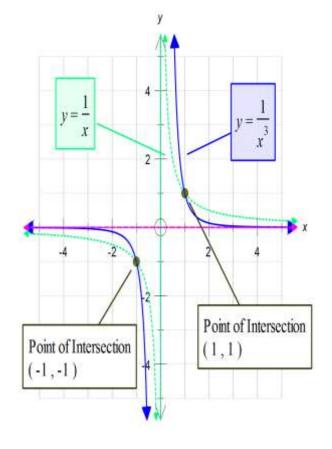
O Horizontal:
$$y = 0$$

 $As \ x \to \infty, \frac{1}{x} \to 0^+$
 $As \ x \to -\infty, \frac{1}{x} \to 0^-$



- Odd function: $f(-x) = \frac{1}{-x} = -\frac{1}{x}$
- Sketch the graph of $f(x) = \frac{1}{x^3} or = x^{-3}$





Even Negative Powers

Functions of the form: $f(x) = x^p$; p = -2, -4,...

- Sketch the graph of $f(x) = \frac{1}{x^2} or = x^{-2}$
- Domain:
- Range:
- Asymptotes:

O Horizontal:
$$y = 0$$

As $x \to \infty, \frac{1}{x} \to 0^+$

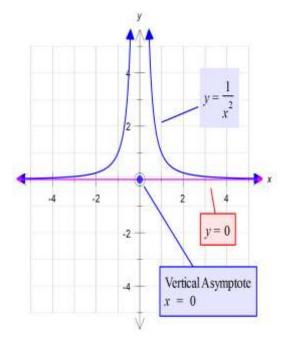
As
$$x \to -\infty$$
, $\frac{1}{x} \to 0^-$

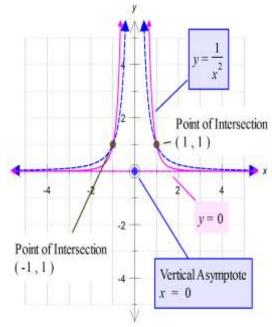
$$\circ$$
 Vertical: $x = 0$

$$As x \to 0^+, \frac{1}{x} \to \infty$$

As
$$x \to 0^-, \frac{1}{x} \to \infty$$

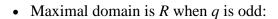
- Even function: $f(-x) = \frac{1}{(-x)^2} = \frac{1}{x^2}$
- Sketch the graph of $f(x) = \frac{1}{x^4} or = x^{-4}$

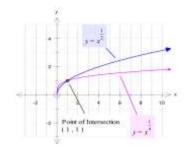


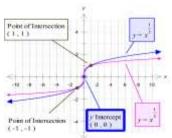


Functions with rational powers: $f(x) = x^{\frac{p}{q}}$

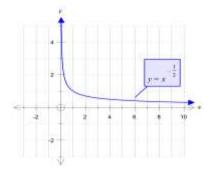
- Of the form: $f(x) = x^{\frac{1}{q}}$
- Remember $f(x) = x^{\frac{1}{q}} = \sqrt[q]{x}$
- Maximal domain is $[0, \infty)$ when q is even:



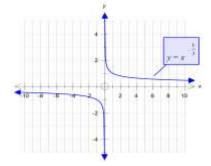




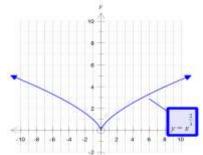
- Consider: $f(x) = \frac{1}{\sqrt[q]{x}} = x^{-\frac{1}{q}} = \frac{1}{x^{\frac{1}{q}}}$
- Domain $(0, \infty)$ if q is even and $R \setminus \{0\}$ if q is odd.
- $f(x) = \frac{1}{\sqrt{x}} :$
- Asymptotes: y = 0 and x = 0.



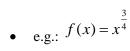
 $\bullet \quad f(x) = \frac{1}{\sqrt[3]{x}}$

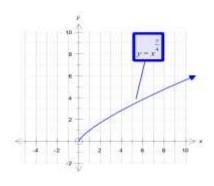


- In General: $f(x) = x^{\frac{p}{q}} = (\sqrt[q]{x})^p$
- Always defined for $x \ge 0$, and when q is odd for all x.



• Eg: $f(x) = x^{\frac{2}{3}}$





Inverses of Power Functions

Example: Find the inverse of each of the following:

a)
$$f: R \to R, f(x) = x^5$$

b)
$$f: (-\infty, 0] \to R, f(x) = x^4$$

c)
$$f: R \to R, f(x) = 8x^3$$

d)
$$f:(1,\infty) \to R, f(x) = 64x^6$$

(a)
$$f: R \to R, f(x) = x^5$$

(b)
$$f:(-\infty,0] \to R, f(x) = x^4$$

(c)
$$f: R \to R, f(x) = 8x^3$$

(d)
$$f:(1,\infty) \to R, f(x) = 64x^6$$

Past VCAA Exam Questions

2008

Question 6

The simultaneous linear equations

$$ax + 3y = 0$$
$$2x + (a + 1)y = 0$$

where a is a real constant, have infinitely many solutions for

- A. $a \in R$
- B. a ∈ {-3, 2}
- C. $a \in \mathbb{R} \setminus \{-3, 2\}$
- **D.** $a \in \{-2, 3\}$
- E. $a \in \mathbb{R} \setminus \{-2, 3\}$

The inverse of the function $f: \mathbb{R}^+ \to \mathbb{R}$, $f(x) = \frac{1}{\sqrt{x}} - 3$ is

A.
$$f^{-1}: \mathbb{R}^+ \to \mathbb{R}$$

$$f^{-1}(x) = (x+3)^{3}$$

B.
$$f^{-1}: R^+ \to R$$
 $f^{-1}(x) = \frac{1}{x^2} + 3$

C.
$$f^{-1}(3, \infty) \to R$$
 $f^{-1}(x) = \frac{-1}{(x-3)^2}$

$$f'(x) = \frac{1}{(x-3)^2}$$

D.
$$f^{-1}: (-3, \infty) \to \mathbb{R}$$
 $f^{-1}(x) = \frac{1}{(x+3)^2}$

$$f^{-1}(x) = \frac{(x+3)^2}{(x+3)^2}$$

E.
$$f^{-1}: (-3, \infty) \to R$$
 $f^{-1}(x) = \frac{1}{x^2} - 3$

$$f^{-1}(x) = \frac{1}{x^2}$$

The function $f: B \to R$ with rule $f(x) = 4x^3 + 3x^2 + 1$ will have an inverse function for

A.
$$B = R$$

B.
$$B = \left(\frac{1}{2}, \infty\right)$$

C.
$$B = \int_{-\infty}^{\infty} \frac{1}{2}$$

D.
$$B = \left(-\infty, \frac{1}{2}\right)$$

E.
$$B = \left[-\frac{1}{2}, \infty \right]$$

2009

Question 1

The simultaneous linear equations

$$kx - 3y = 0$$
$$5x - (k+2)y = 0$$

where k is a real constant, have a unique solution provided

A.
$$k \in \{-5, 3\}$$

$$\mathbf{B}, \quad k \in R \setminus \{-5, 3\}$$

C.
$$k \in \{-3, 5\}$$

$$\mathbf{D}, \quad k \in \mathbb{R} \setminus \{-3, 5\}$$

E. $k \in R \setminus \{0\}$

Let $f: R \setminus \{0\} \to R$ where $f(x) = \frac{3}{x} - 4$. Find f^{-1} , the inverse function of f.

2010

Question 7

The simultaneous linear equations (m-1)x + 5y = 7 and 3x + (m-3)y = 0.7m have infinitely many solutions for

- A. m∈R\{0,-2}
- B. m∈R\{0}
- C. m∈R\{6}
- **D.** m = 6
- E. m = -2

Question 9

The function $f: (-\infty, a] \to R$ with rule $f(x) = x^3 - 3x^2 + 3$ will have an inverse function provided

- A. a ≤ 0
- B. $a \ge 2$
- C, a≥0
- D. a≤2
- E. a≤1

Question 5

For the system of simultaneous linear equations

$$x = 5$$

$$z + y = 10$$

$$z-y=6$$

an equivalent matrix equation is

A.
$$\begin{vmatrix} x \\ y \\ z \end{vmatrix} \begin{vmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & -1 & 0 \end{vmatrix} = \begin{vmatrix} 5 \\ 10 \\ 6 \end{vmatrix}$$

B.
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 10 \\ 6 \end{bmatrix}$$

C.
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = 2 \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & -1 \\ 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 6 \\ 10 \end{bmatrix}$$

$$\mathbf{D.} \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 10 \\ 6 \end{bmatrix}$$

$$\mathbf{E.} \quad \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \\ 10 \end{bmatrix}$$

Question 3

Let $f: \mathbb{R}^+ \to \mathbb{R}$ where $f(x) = \frac{1}{x^2}$.

a. Find g(x) = f(f(x)).

Evaluate g⁻¹ (16), where g⁻¹ is the inverse function of g.

1 mark

1 mark

2011

Question 1

The midpoint of the line segment joining (0, -5) to (d, 0) is

A.
$$\left(\frac{d}{2}, -\frac{5}{2}\right)$$

C.
$$\left(\frac{d-5}{2}, 0\right)$$

$$\mathbf{D}, \quad \left(0, \, \frac{3-d}{2} \right)$$

E.
$$\left(\frac{5+d}{2}, 0\right)$$

Question 2

The gradient of a line perpendicular to the line which passes through (-2, 0) and (0, -4) is

$$A = \frac{1}{2}$$

$$c. -\frac{1}{2}$$

Question 3

If x + a is a factor of $4x^3 - 13x^2 - ax$, where $a \in \mathbb{R} \setminus \{0\}$, then the value of a is

Question :

The inverse function of $g: (2, \infty) \to R$, $g(x) = \sqrt{2x-4}$ is

A.
$$g^{-1}: \{2, \infty\} \to R, g^{-1}(x) = \frac{x^2 + 4}{2}$$

B.
$$g^{-1}:[0,\infty)\to R, g^{-1}(x)=(2x-4)^2$$

C.
$$g^{-1}: [0, \infty) \to R, g^{-1}(x) = \sqrt{\frac{x}{2} + 4}$$

$$\mathbf{D}, \quad g^{-1} \colon [0, \, \infty) \to R, \, g^{-1}(x) = \frac{x^2 + 4}{2}$$

E.
$$g^{-1}: R \to R, g^{-1}(x) = \frac{x^2 + 4}{2}$$

Question 8

Consider the function $f: R \to R, f(x) = x(x-4)$ and the function

$$g: \left[\frac{3}{2}, 5\right) \rightarrow R, g(x) = x + 3.$$

If the function h = f + g, then the domain of the inverse function of h is

B.
$$\left[-\frac{3}{4}, 10 \right]$$

c.
$$\left(-\frac{3}{4}, \frac{15}{4}\right)$$

D.
$$\left[\frac{3}{4}, 13\right]$$

E.
$$\left[\frac{3}{2}, 13\right]$$

Question 18

The equation $x^3 - 9x^2 + 15x + w = 0$ has only one solution for x when

D.
$$w < -7$$
 or $w > 25$

E.
$$w > 1$$

One	stion 4		
	e function f has the rule $f(x) = \sqrt{x^2 - 9}$ and the function g has the rule $g(x) = x + 5$		
	find integers c and d such that $f(g(x)) = \sqrt{(x+c)(x+d)}$		
	,		
		-	
		7,6	
		2 marks	
	state the maximal domain for which $f(g(x))$ is defined.		
		-	
		2 marks	
	Question 6		
(Consider the simultaneous linear equations		
	1 2 1 2		
	kx - 3y = k + 3		
	4x + (k+7)y = 1		
	where k is a real constant.		
	 Find the value of k for which there are infinitely many solutions 	i.	
			3 marks
	Find the values of k for which there is a unique solution.		
	Find the values of k for which there is a unique solution.		

2012

Question 3

The range of the function $f:[-2, 3) \rightarrow R$, $f(x) = x^2 - 2x - 8$ is

A. R

B. (-9,-5]

C. (-5, 0)

D. [-9, 0]

E. [-9, -5)

Question 5

Let the rule for a function g be $g(x) = \log_{\theta}((x-2)^2)$. For the function g, the

A. maximal domain = R^+ and range = R

B. maximal domain = $R \setminus \{2\}$ and range = R

C. maximal domain = $R \setminus \{2\}$ and range = $(-2, \infty)$

D. maximal domain = $[2, \infty)$ and range = $(0, \infty)$

E. maximal domain = $[2, \infty)$ and range = $[0, \infty)$

Question 17

A system of simultaneous linear equations is represented by the matrix equation

$$\begin{bmatrix} m & 3 \\ 1 & m+2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ m \end{bmatrix}.$$

The system of equations will have no solution when

A. m = 1

B. m = -3

C. $m \in \{1, -3\}$

 $\mathbf{D},\quad m\in R\backslash\{1\}$

E. m = (1,3)

Question 3

The rule for function h is $h(x) = 2x^3 + 1$. Find the rule for the inverse function h^{-1} .

2 marks

2013

Ouestion

The nucleons of the line segment that joins (1, -5) to (d, 2) is

$$A_{+} \left(\frac{d+1}{2}, -\frac{3}{2} \right)$$

B.
$$\left(\frac{1-d}{2}, -\frac{7}{2}\right)$$

C.
$$\left(\frac{d-4}{2}, 0\right)$$

D.
$$\left\{0, \frac{1-d}{2}\right\}$$

E.
$$\left(\frac{5+d}{2}, 2\right)$$

Question 3

If x + a is a factor of $7x^3 + 9x^2 - 5ax$, where $a \in R\setminus\{0\}$, then the value of a is

- A. -4
- B. -2 C. -1
- D. 1
- E. 2

Question 5

If $f: (-\infty, 1) \to R$, $f(x) = 2 \log_a(1-x)$ and $g: [-1, \infty) \to R$, $g(x) = 3\sqrt{x+1}$, then the maximal domain of the function f + g is

- A. [-1, 1)
- B. (1, ∞)
- C. (-1, 1]
- D. (-∞,-1]
- E. R

Question 21

The cubic function $f: R \to R$, $f(x) = ax^3 - bx^2 + cx$, where a, b and c are positive constants, has no stationary

- $E_c = c < \frac{b^2}{3a}$

2014

Question 2

The linear function $f: D \to R$, f(x) = 4 - x has range [-2, 6]

The domain D of the function is

- A. [-2, 6)
- B. (-2, 2]
- C. R
- D. (-2, 6]
- E. [-6, 2]

Question 6

The function $f: D \to R$ with rule $f(x) = 2x^3 - 9x^2 - 168x$ will have an inverse function for

- A. D=R
- B. $D = (7, \infty)$
- C. D = (-4, 8)
- **D**. $D = (-\infty, 0)$

Question 9

The inverse of the function $f: R^+ \to R$, $f(x) = \frac{1}{\sqrt{x}} + 4$ is

- **A.** $f^{-1}: (4, \infty) \to R$ $f^{-1}(x) = \frac{1}{(x-4)^2}$

- B. $f^{-1}: R^+ \to R$ $f^{-1}(x) = \frac{1}{x^2} + 4$ C. $f^{-1}: R^+ \to R$ $f^{-1}(x) = (x+4)^2$ D. $f^{-1}: (-4, \infty) \to R$ $f^{-1}(x) = \frac{1}{(x+4)^2}$ E. $f^{-1}: (-\infty, 4) \to R$ $f^{-1}(x) = \frac{1}{(x-4)^2}$

The simultaneous linear equations ax - 3y = 5 and 3x - ay = 8 - a have no solution for

B.
$$a = -3$$

C. both
$$a = 3$$
 and $a = -3$

Question 18

The graph of y = kx - 4 intersects the graph of $y = x^2 + 2x$ at two distinct points for

B.
$$k > 6$$
 or $k < -2$

D.
$$6-2\sqrt{3} \le k \le 6+2\sqrt{3}$$

Question 2

The inverse function of
$$f:(-2, \infty) \to R$$
, $f(x) = \frac{1}{\sqrt{x+2}}$ is

A.
$$f^{-1}: R^+ \to R$$

$$f^{-1}(x) = \frac{1}{x^2} - 2$$

$$\mathbf{B}.\quad f^{-1}\colon R\backslash\{0\}\to R$$

$$f^{-1}(x) = \frac{1}{x^2} - 2$$

C.
$$f^{-1}: \mathbb{R}^* \to \mathbb{R}$$

$$f^{-1}(x) = \frac{1}{x^2} +$$

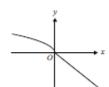
D.
$$f^{-1}: (-2, \infty) \rightarrow R$$

$$f^{-1}(x) = x^2 + 2$$

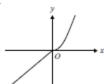
E.
$$f^{-1}:(2,\infty)\to R$$

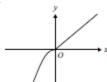
$$f^{-1}(x) = \frac{1}{x^2 - 2}$$

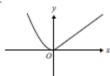
Question 5 Part of the graph of y = f(x) is shown below.

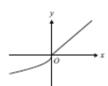


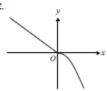
The corresponding part of the graph of the inverse function $y = f^{-1}(x)$ is best represented by











Question 6

For the polynomial $P(x) = x^3 - ax^2 - 4x + 4$, P(3) = 10, the value of a is

- A. -
- B. -1
- C. 1
- **D**. 3
- E. 10

Question 7

The range of the function $f: (-1, 2] \rightarrow R$, $f(x) = -x^2 + 2x - 3$ is

- A. 1
- B. (-6, -3]
- C. (-6, -2]
- **D**. [-6, -3]
- E. [-6, -2]

Question 17

A graph with rule $f(x) = x^3 - 3x^2 + c$, where c is a real number, has three distinct x-intercepts.

The set of all possible values of c is

- A. R
- B. R^{\dagger}
- C. (0,4)
- D. (0, 4)
- E. (-∞, 4)

Question 21

The graphs of y = mx + c and $y = ax^2$ will have no points of intersection for all values of m, c and a such that

- A. a > 0 and c > 0
- B. $\alpha > 0$ and c < 0
- C. $\alpha > 0$ and $c > -\frac{m^2}{4\alpha}$
- **D**. $\alpha \le 0$ and $c \ge -\frac{m^2}{4\alpha}$
- E. m > 0 and c > 0