

Érettségi Emelt szint 2013.okt. 7.

- 7. Az *ABCDEF* szabályos hatszögben a rövidebb átló hossza $5\sqrt{2}$.
 - a) Számítsa ki a hatszög területének pontos értékét!
 - b) Az *ABCDEF* hatszög oldalfelező pontjai által meghatározott szabályos hatszög területét jelölje t_1 , a t_1 területű hatszög oldalfelező pontjai által meghatározott szabályos hatszög területét t_2 , és így tovább, képezve ezzel a $\{t_n\}$ sorozatot. Számítsa ki a $\lim_{n \to \infty} (t_1 + t_2 + ... + t_n)$ határértéket! (Pontos értékekkel számoljon!)

#	Eszköz	Megadás	Megjegyzés
1	▼ Rajzlap	Tengelyek és rács elrejtése	később visszahozzuk és felhasználjuk az x tengelyt és rácsozását
2	▲ ●	két tetszőleges pont a rajzlapon	
3	a = 2	n egész 3-tól 10-ig	n=6 értéket állítsunk be rajta
4		Sokszög(A, B, n)	létrejön a szabályos hatszög poligon1 névvel a csúcsok és szakaszok mellé. Algebrai ablakban poligon1 mellett a számérték az adott sokszög területe.
5		Szakasz(A, C), Szakasz(C, E), Szakasz(E,A)	
6	•••	Középpont(A, D)=G	A létrejött ábrán látható, hogy a hatszög területe az $5\sqrt{2}$ oldalú szabályos háromszög területének a kétszerese.
7	Nézet →CAS- komputeralgebra Ctrl+Shift+K	5*sqrt(2)*5*sqrt(2)*sqrt(3)/2= =6*(a*a*sqrt(3)/2)/2	Begépeljük az összefüggést a háromszög és a hatször területére vonatkozóan. Ha a-val jelölt alakzatunk még nincsen az algebrai ablakban.

8	=	Ellenőrizzük, helyesen gépetük-e be az összefüggést.	5*sqrt(2)*5*sqrt(2)*sqrt(3)/2=6*(a*a*sqrt(3)/2)/2 → $\sqrt{3} \cdot 25 = \frac{3}{2} \sqrt{3} a^2$
9	x =	Megoldjuk a–ra az egyenletet.	5*sqrt(2)*5*sqrt(2)*sqrt(3)/2=6*(a*a*sqrt(3)/2)/2 Megold: $\left\{ \mathbf{a} = -5 \cdot \frac{\sqrt{6}}{3}, \mathbf{a} = 5 \cdot \frac{\sqrt{6}}{3} \right\}$
10		Tengelyek mutatása	
11	₹.	Az A pontnak az origóba vonszolása.	
12	B pont újradefiniálása	B = (5sqrt(6) / 3, 0)	Ne új pontot hozzunk létre, hanem a B pontra kétszer kattintva az algebrai ablakban definiáljuk újra a már létező pontunkat.
13	CAS- komputeralgebra	6*(a*a*sqrt(3)/2)/2	Régi kifejezésÚj kifejezésa $5*sqrt(6)/3$ Válasz az a) kérdésre: $6*(a*a*sqrt(3)/2)/2$ Helyettesít, a= $5*sqrt(6)/3$: $\sqrt{3} \cdot 25$
14	7 √□ ≈	Vessük össze a poligon1 értékével, ami a létrejött szabályos hatszög területe alapértelmezetten.	6*(a*a*sqrt(3)/2)/2 Helyettesít, a=5*sqrt(6)/3: 43.3
		A feladat b) része	
15	••	H=Középpont(A, B) I=Középpont(B,C)	HI az ABC háromszög középvonala, hossza $\frac{5\sqrt{2}}{2}$
16	T	Sokszög(H, I, n)	poligon2=32,48 algebrai ablakban
17	Menü Eszközök <u> </u>	Kimenő alakzatok: H, I, poligon2 Bemenő alakzat: A,B, n Név és ikon: Ssoksz	Ezután ikonra az adott ikonra kattintva vagy a parancssorba gépelve is létrehozhatjuk a következő, a sokszög szakaszfelező pontjai által meghatározott sokszöget.
18	٩	Ssoksz(H, I, n)	Figyeljünk a körüljárásra! Létrejön N, O és poligon3
19	٩	Ssoksz(N,O, n)	Figyeljünk a körüljárásra! Létrejön P, Q és poligon4
20	٩	Ssoksz(P,Q, n)	Figyeljünk a körüljárásra! Létrejön R,S és poligon5
21	Menü → Táblázatkezelő vagy Ctrl+Shift+S	A1=1,A2=2, A3=3, A4=5 B1=poligon2, B2=poligon3, B3=poligon4, B4=poligon5, C2=B2/B1, C3=B3/B2, C4=B4/B3	Észrevétel: C2=C3=C4=0,75

22	Parancssor:	(q/f)^2=d	Keressük ki a következő szakaszokat: q=Szakasz(H,I) f=Szakasz(A,B) A kifejezés 0,75 értéket ad. Hasonló síkidomok területaránya, a hasonlóság arányának négyzete
23	Menü→Nézet→ Rajzlap 2	n_1 egész értékű	kattintsunk bele a Rajzlap2-be csúszkát hozzunk létre egy sorozat első 30 elemének egymást követő tagjainak szemléltetésére
24	Parancssor:	Sorozat((i, poligon2 d^(i – 1)), i, 1, n_1)	A Rajzlap2 beállításai: x tengelye -1-től 30-ig y tengelye -5-től 35-ig a mértani sorozat, mint speciális függvény első n_1 elemének megadása. A sorozat határétéke 0, mivel kvóciense 1-nél kisebb.
25	Parancssor:	Sorozat((i,poligon2(d^i – 1) /(d -1)), i, 1, n_1)	A mértani sor konvergens, mivel pozitív kvóciense 1-nél kisebb. Részletösszegsorozat határétékét kell még meghatározni.
26	• •	y tengely vonszolása	Rajzlap2-n az y tengely -5-től 135- ig legyen látható
27	Parancssor:	poligon2(d^x – 1) /(d -1)=f_1(x)	Sorozat határértékét nem tud kezelni a program, de függvény határértéket igen, ezért illesszük rá a pontsorozatra azt a valós számok halmazán értelmezett exponenciális függvényt, aminek pozitív egészekre való leszűkítéseként kaptuk meg a mértani sorozatunkat
28	Parancssor:	Határérték(f_1, ∞)=e	<i>e</i> =129,9
29	Parancssor:	y=e	Figyeljük meg, hogy simul-e a pontsorozatunk a létrejött x tengellyel párhuzamos egyeneshez.
30	CAS- komputeralgebra	25*sqrt(3)*3/4/(1-3/4)	75√3 ≈ 129,9
30	Videó URL-je	https://youtu.be/i0ZBHDkrIzA	