Square Through Squares

Squaring through points on Squares

A new formula is derived by Piyush Kumar Goyal known as "Square Through Squares".
Formula is mention below:

$$
N^{2}=\left[(N-2)^{\text {th }} \text { Sq. on Y-Axis }\right] *\left[3^{\text {rd }} \text { Sq. on X-Axis }\right]+\left[(N-3)^{\text {th }} \text { Sq. on Y-Axis }\right] *\left[(N-3)^{\text {th }} \text { Sq. on X-Axis }\right]
$$

Let's take some examples:

1. Square of 5

$$
\begin{aligned}
5^{2} & =\left[(5-2)^{\text {th }} \text { Sq. on Y-Axis }\right] *\left[3^{\text {rd }} \text { Sq. on X-Axis }\right]+\left[(5-3)^{\text {th }} \text { Sq. on Y-Axis }\right] *\left[(5-3)^{\text {th }} \text { Sq. on X-Axis }\right] \\
& =\left[3^{\text {rd }} \text { Sq. on Y-Axis }\right] *\left[3^{\text {rd }} \text { Sq. on X-Axis }\right]+\left[2^{2 d d} \text { Sq. on Y-Axis }\right] *\left[2^{\text {nd }} \text { Sq. on X-Axis }\right]
\end{aligned}
$$

$5^{2}=\left(3^{\text {rd }}\right.$ Sq. $* 3^{\text {rd }}$ Sq. $)+\left(2^{\text {nd }}\right.$ Sq. ${ }^{*} 2^{\text {nd }}$ Sq. $)$
$=16$ points +9 points
$=25$ points
$4^{2}=\left[(4-2)^{\text {th }}\right.$ Sq. on Y-Axis $] *\left[3^{\text {rd }}\right.$ Sq. on X-Axis $]+\left[(4-3)^{\text {th }}\right.$ Sq. on Y-Axis $] *\left[(4-3)^{\text {th }}\right.$ Sq. on X-Axis $]$ $=\left[2^{\text {nd }}\right.$ Sq. on Y-Axis $] *\left[3^{\text {rd }}\right.$ Sq. on X-Axis $]+\left[1^{\text {st }}\right.$ Sq. on Y-Axis $] *\left[1^{\text {st }}\right.$ Sq. on X-Axis $]$

$4^{2}=\left(2^{\text {nd }}\right.$ Sq. $*^{*} 3^{\text {rd }}$ Sq. $)+\left(1^{\text {st }}\right.$ Sq. ${ }^{*} 1^{\text {st }}$ Sq. $)$
$=12$ points +4 points
= 16 points

