Survey of Calculus

Exercise: Consider the function $f(x)=\sqrt{x+3}$. Find the slope and the equation of the line tangent to f at $x=13$.

Solution: Recall, the slope of the tangent line is given by,

$$
\text { Slope of Tangent }=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

In this case, we can simply plug into $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Remember! $f(x+h)$ is found by replacing each x in f with $x+h$.

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{(x+h)+3}-\sqrt{x+3}}{h}
$$

In order to evaluate this limit, we need to multiply the numerator and denominator by the conjugate. This is a good strategy when you have a binomial and one or both of the terms involve roots. The conjugate is found by changing the sign of the second term. For example, the conjugate of $a-b$ is $a+b$. This will rationalize our expression.

$$
\lim _{h \rightarrow 0} \frac{\sqrt{(x+h)+3}-\sqrt{x+3}}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{(x+h)+3}-\sqrt{x+3}}{h} \cdot \frac{\sqrt{(x+h)+3}+\sqrt{x+3}}{\sqrt{(x+h)+3}+\sqrt{x+3}}
$$

When evaluating $\frac{\sqrt{(x+h)+3}-\sqrt{x+3}}{h} \cdot \frac{\sqrt{(x+h)+3}+\sqrt{x+3}}{\sqrt{(x+h)+3}+\sqrt{x+3}}$, we F.O.I.L. the numerator, and typically want to leave the denominator unsimplified, as we will be able to cancel out our h term later. If the rational expression is in the denominator, we will want to leave the numerator unsimplified.

First, we will evaluate $(\sqrt{(x+h)+3}-\sqrt{x+3})(\sqrt{(x+h)+3}+\sqrt{x+3})$. Then we will evaluate the limit. Recall, $(a-b)(a+b)=a^{2}-b^{2}$.

$$
\begin{aligned}
(\sqrt{(x+h)+3}-\sqrt{x+3})(\sqrt{(x+h)+3}+\sqrt{x+3}) & =(\sqrt{(x+h)+3})^{2}-(\sqrt{x+3})^{2} \\
& =((x+h)+3)-(x+3) \\
& =x+h+3-x-3 \\
& =h .
\end{aligned}
$$

Plugging back into the limit,

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\sqrt{(x+h)+3}-\sqrt{x+3}}{h} \cdot \frac{\sqrt{(x+h)+3}+\sqrt{x+3}}{\sqrt{(x+h)+3}+\sqrt{x+3}} & =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{(x+h)+3}+\sqrt{x+3})} \\
& =\lim _{h \rightarrow 0} \frac{1}{(\sqrt{(x+h)+3}+\sqrt{x+3}} \\
& =\frac{1}{\sqrt{(x+(0))+3}+\sqrt{x+3}} \\
& =\frac{1}{\sqrt{x+3}+\sqrt{x+3}} \\
& =\frac{1}{2 \sqrt{x+3}} .
\end{aligned}
$$

Therefore, $f^{\prime}(x)=\frac{1}{2 \sqrt{x+3}}$. This tells us, for example, that at $x=13$, when

$$
f(13)=\sqrt{13+3}=\sqrt{16}=4,
$$

the slope is changing at a rate of

$$
f^{\prime}(13)=\frac{1}{2 \sqrt{13+3}}=\frac{1}{2 \sqrt{16}}=\frac{1}{2 \cdot 4}=\frac{1}{8} .
$$

This is the derivative of f at $x=13$, which tells us the slope of the tangent line at $x=13$.

Now, we have our two pieces of information needed to find the equation of the line tangent to f at $x=13$; our point $(13,4)$, and the slope, $\frac{1}{8}$. Using the point-slope equation, we have,

$$
\begin{aligned}
\left(y-y_{1}\right) & =m\left(x-x_{1}\right) \\
(y-4) & =\frac{1}{8}(x-13) \\
y-4 & =\frac{1}{8} x-\frac{13}{8} \\
y & =\frac{1}{8} x-\frac{13}{8}+4 \\
& =\frac{1}{8} x+\frac{19}{8} .
\end{aligned}
$$

Thus, the equation of the line tangent to f at $x=13$ is represented by $y=\frac{1}{8} x+\frac{19}{8}$.

