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1 Introduction

The relation between the circumference and the radius of a circle is one of the most important
concepts explained during the first years in the academic path of a math student. This relation
is not a trivial concept and over centuries has fascinated mathematicians and scientists from
ancient Egypt to the modern supercomputers whose power has been tested by calculating
digits of π.
Archimedes created an algorithm for calculating π in his book Measurement of the circle but
it was Leonard Euler who in 1737 introduced the use of the Greek letter π to refer to the
number we know as pi. 1. Introducing the relation to Elementary and Secondary students
for the first time can be a complex task. As a matter of fact, it took mankind centuries to
comprehend the nature of π but nowadays the programs of study spend only a short time
explaining it.

Geogebra is a new technology, that stands out among the others and can be extremely useful
in explaining the relation between the circumference and the radius of a circle. The con-
struction of the animation explained in this article provides a valuable didactic resource to
facilitate the students’ comprehension of the relation.

In 1882, the German mathematician Ferdinand Lindermann proved that π is a transcen-
dental number, meaning it is not a root of any polynomial with rational coefficients. The
most important consequence of this fact, is the impossibility of solving one of the three un-
solved problems of ancient Greece: squaring the circle, also known as the quadrature of a circle.
The transcendence of pi implies the impossibility of circling the square, as well as squaring
the circle by compass and straightedge. A circle can be squared but not exclusively by using
compass and straightedge.2 The impossibility of squaring the circle implies the impossibility
of rectifying the circumference, as we are going to explain a segment of length equivalent
to the length of a circumference can’t be constructed by compass and straightedge. The
impossibility of solving the other two problems of ancient Greece: trisecting an angle and
doubling a cube, is deduced by other methods.

1.1 The square of the circle and the rectifying of the circumference

The impossibility of squaring the circle implies the impossibility of rectifying the circumference

Consider the following geometric process:
1https://en.wikipedia.org/wiki/Pi
2https://en.wikipedia.org/wiki/Squaring_the_circle
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1. Construct a line segment of length π · R + R, and a semicircle with center in its middle
point (It is assumed that R > 0)

π R R

2. Construct a line segment perpendicular to the previous segment with origin in π · R
and end in the intersection with the semicircumference.

π R R

3. The drawing shows a right triangle. The angle corresponding to the vertex A is a right
angle.

Rπ R
B C

A

bh
c

As the line segment h is the height of the triangle, using the geometric mean theorem
we have that:

h2 = π · R · R = π · R2 =⇒ h =
√
π · R

4. Constructing a square of side l =
√
π · R

l =
√
π · R
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5. The area of the square would be S = (
√
π · R)2 = π · R2. Therefore we have constructed

a square whose area is the same as a circle of radius R.

It seems that we achieved our goal: the square of the circle. Where is the problem? Have
we used strictly compass and straightedge to draw the previous construction? Lindemann
did not prove that the square of the circle was impossible, he proved that it is not possible
by using only compass and straightedge. If in the previous construction the drawing of a
line segment of length π · R using straightedge and compass was possible, the squaring of
the circle would be possible. Knowing that the squaring of the circle is not possible we can
conclude that the rectifying of the circumference is not possible.

1.2 Rectifying the circumference with Geogebra

Geogebra is based on the straightedge and the compass. Therefore, it is not possible with this
software to solve the problem of rectifying the circumference. However, as we are going to
show it is possible to obtain an acceptable approximation to the rectify of the circumference.

2 Explanation of the problem and its elements

2.1 The final construction

The purpose of this document is the explanation of the process of unfolding a circumference
to become a line segment on the OX axis using Geogebra. The final construction can be
found at https://www.geogebra.org/m/YZ5wBUDD and it is inspired by a construction of
the Geogebra institute of HongKong by Anthony C.M. OR that can be found here: https:
//www.geogebra.org/m/fyqAUV22.

Figure 1: Animation

In order to understand the animation a sequence is showed in Figure 1

2.2 Key element definition

Let’s define some key elements of the construction on figure 2

1. r is the radius of the circumference whose lenght is going to be unfold becoming a line segment.
The length of the line segment is the circumference which is going to be rectify.
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r = 1.45m = 0.89
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Figure 2: Key Elements

2. R is the radius of the arc of circle that creates the animation. It is an arc of a fixed lenght of a
circumference with a variable radius.

3. The point A is the center of the circumference of radius R, which moves along the positive
X-axis.

4. The point B is the endpoint of the arc of circle that is going to be unfolded

3 Analysis of the animation elements

3.1 The point A

A slider in Geogebra is a control to modify a specific value by the user. In this particular case
we will build a slider for the variable m that would change from 0 to 1 drawing the point A
giving the coordinates (0, r

1−m ) to it.

As we said before, the point A moves away from the origin of the coordinate system on the
positive Y-axis as the circumference is unfolded.

The point moves from the center of the circle that is going to be rectified ((0,r) coordinates)
moving away from the origin of the coordinate system as the point moves along the Y-axis,
therefore its first coordinate would always be zero, moreover r > 0 and r approaches +∞. It
can be seen that when the arc of circle has been completely unfolded, the value of m will be 1
and therefore the value of the second coordinate of point A will be undefined as we defined
it as r

1−m ). At any point before reaching the horizontal position, the point A would be on
the positive Y-axis As we said before a way to represent this situation is to create a slider in
Geogebra called m.

A(0,
r

1 −m
)

Point A coordinates

Rectifying the circumference with Geogebra 4



Notice that limm→1−
r

1−m = +∞. Funtion f (x) = r
1−m grows approaching +∞ as m approaches

1 from the left. The slider will move point A along the Y-axis from coordinate (0,r) to (0,+∞)
The behaviour of the point A can be understood better looking at figure 3

Figure 3: The point A moves from (0,r) along the positive Y-axis

3.2 Point B

The point B is the endpoint of the arc of the circle that is going to be rectified. In other words,
the circumference becomes an arc whose endpoints are the origin of the coordinate system
(0,0) and the point B(x1, x2)

The coordinates of point B are defined in figure 4. The right triangle ABC can bee seen in
this figure and the angle α whose sine is sin(α) = x1

R . Knowing that R − x2 is the value of the
adjacent side to α in that triangle, we have that cos(α) = R−x2

R .

3.3 The angle α

In figure 5 the circumference to be rectified with radius r, and the arc into which it is
transformed can be seen. This arc has a radius R where one of the endpoints is the point A
and the other endpoint is (0,0).

The central angles are proportional to the length of the correspondent arc, as shown in the
following figures (notice that the angles are measured in radians):

α
2π

=
2πr
2πR
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Figure 4: Point B coordinates
r = 1.36m = 0.8
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Figure 5: Ratio of radiuses

Solving for α we obtain that α = 2πr
R measured in radians. Remember that when we talked

about the point A we defined it with the coordinates (0, r
1−m ). It means that the radius of

the big circumference with center in A is r
1−m . By substituting in the previous expression:

α = 2πr
R = 2πr

r
1−m

= 2π · (1 −m).

α = 2πr
R = 2πr

r
1−m

= 2π · (1 −m).

Returning to the coordinates of point B:
The coordinate x1 can be calculated using the expression sin(α) = x1

R

sin(α) =
x1

R
=⇒ x1 = sin(α) · R = sin(2π · (1 −m)) ·

r
1 −m

=
r · sin(2π · (1 −m))

1 −m

x1 =
r · sin(2π · (1 −m))

1 −m

The coordinate x2 can be calculated solving the expression cos(α) = R−x2
R

cos(α) =
R − x2

R
=⇒ x2 = R − cos(α) · R = R · (1 − cos(α)) = r

1−m · (1 − cos(2π · (1 −m)))
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x2 =
r · (1 − cos(2π · (1 −m)))

1 −m

3.4 Analytic proof of the relation between the coordinate x1 and the length of the cir-
cumference when m→ 1−

It can be proven that when m→ 1− the coordinate x1 becomes the length of the circumference,

remembering that lim
x→0−

sin(x)
x

= lim
x→0+

sin(x)
x

= 1, and knowing that x is measured in radians.

We have that:

(Be aware that if m→ 1 then (1 −m)→ 0)

lim
m→1−

r · sin(2π · (1 −m))
1 −m

=
[0
0

]
= 2πr · lim

m→1−

sin(2π · (1 −m))
2π(1 −m)

= 2πr

In the same way it is true for m→ 1+, therefore:

lim
m→1

sin(2πr · (1 −m))
1 −m

= 2πr

For the calculation of this limit L’Hôpital’s rule can be used, but that would assume the use of
derivatives is known.

3.5 In order to calculate the coordinate x2 it can be proven that it approaches 0 when
m→ 1 either from right or left. That implies that the rectified circumference will be
on the positive X-axis

lim
m→1−

r · (1 − cos(2π · (1 −m)))
1 −m

=
[0
0

]
= (1) lim

m→1−

r · (2sin2
[

2π·(1−m)))
2

]
1 −m

=

2 · r · lim
m→1−

sin(π · (1 −m))
1 −m

·
sin(π · (1 −m))

1
=

= 2π · lim
m→1−

sin(π · (1 −m))
π · (1 −m)

·
sin(π · (1 −m))

1
= 2π · 1 · 0 = 0

The identity 1 − cos(x) = 2sin2( x
2 ) has been used in (1)

The same result will be obtained for m→ 1−, so

lim
m→1

r · (1 − cos(2πr · (1 −m)))
1 −m

= 0

4 Concluding remarks

The point A cannot exist when m = 1. Therefore, we might ask why when m = 1 the line
segment is drawn. The answer is that when m = 1 the coordinates of the point A are not
defined and we forced the software to draw a line segment of an approximate length 2πr.

Rectifying the circumference with Geogebra 7



This can be done by using the visibility condition of a Geogebra object, that can be found
in the advanced section of the property dialog. In that section we can include conditions to
show an object and in this particular case the condition will be m = 1. In the animation we
will add also three whole circles and the proportional part of a fourth one with the same
condition to show the relation in a graphic way.

5 Related constructions

The previous work explained here can be used to build other constructions with some
didactic value. The next construction can help in the explanation and comprehension when
calculating the area of a circumference. The Geogebra file can found in the link https://www.
geogebra.org/m/BmdpMWez and it shows a circumference of radius r and the construction
of a triangle with the same surface, whose base is πr and whose height is r. The same
explanation we did in the first animation should be done here, because as we explained, the
circumference can’t be rectified by compass and straightedge.

The animation built in this section uses the previous analysis of this document but draws
multiple concentric circumferences that are unfolded until completely horizontal. Each
circumference has been divided into two arcs of the same length as can be seen in figure 6.

The Geogebra file has been designed using a slider that controls the number of circumferences
as it is shown in figure 7

In figure 8 the final triangle can be seen with an height equal to the radius of the circumference
and whose base is 2πr 3. Therefore its area can be calculated as:

A =
base · height

2
=

2πr · r
2

= π · r2

3As it was said before the base is not really 2πr long as the circumference can’t be rectified by compass and straightedge.
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Figure 6: Related constructions
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Figure 7: Construction increasing the number of circumferences

2πr

Figure 8: Area of the triangle
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