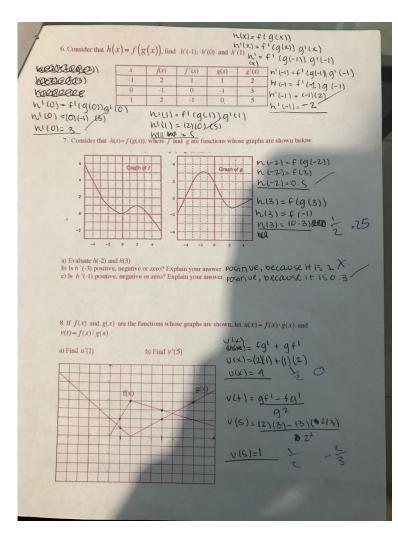


SECOND PARTIAL

QUIZZES

Prepa Tec Calculus I 2nd partial Quiz # 1B Name Barbara ANEar Mat. A01590137 I. Circle the right answer. (5 point each) 1) The following functions is not differentiable at x = 2 $f(x) = \frac{x+1}{x-2}$ b) $f(x) = (x-2)^2$ c) $f(x) = \frac{x^2}{x+2}$ d) $f(x) = \sqrt{x+2}$ 2) The following function is not differentiable at x = 1a) f(x) = |x+1| b) $f(x) = x^3 - 1$ $f(x) = \frac{1}{x+1}$ (d) $f(x) = \sqrt{x-1}$ 3) Find the slope for $f(x) = -4x^3$ at x = 2A) 32 B)-32 C)-96 D)-48 4) What is the equation of the tangent line for the curve $y=x^3+2$ at the point (-2,-6) A) y = -12x - 30 B) y = 12x - 30 C) y = 12x + 18 D) y = -12x - 18y=x3+2 y'= 3x2 II. Answer the following questions. $m = y' = 3(-2)^2$ 1. The concentration of a drug in the bloodstream is given by: (15 points) $C = 870 - 2t^2$. Where t is measured in minutes. Find the rate of change in the concentration at 30 minutes C=-4t C=-4(30) C=-120 2. The following graph shows the function y = f(x) (20 points) -5 -4 -3 -2 -2 0 1 2 3 4 5 6 Find the values of "x" where the function is not continuous a) 12 b) Find the values of "x" where the function is not differentiable $\frac{1}{2}$

III. Find the derivative by definition of the following function: (15 points) $f(x) = 4x^2 + 7$ $f'(x) = \lim_{h \to 0} (4(x^2 + 2xh + h^2) + 7 - (4x^2 + 7))/h$ $f'(x) = \lim_{h \to 0} (4(x^2 + 2xh + h^2) + 7 - 4x^2 - 7)/h$ $f(x) = \lim_{h \to 0} (4x^2 + 8xh + 4h^2 + 4 - 4x^2 - 7)/h$ $f'(x) = \lim_{h \to 0} \frac{K(8x + 4h)}{K}$ f'(x)= lim 8xtah $f'(x) = \lim_{N \to 0} 8x + 4(0) \qquad f'(x) = 8x$ h-00 IV. Find the derivative of the following: a) $f(x) = \frac{7}{2x^2} - 6x^8 + 3\sqrt[5]{x^4}$ (10 points) $f^{1}(x) = \frac{7x^{-2}}{2} - 48x^{7} + 3x^{4/5}$ $f^{1}(x) = -\frac{14x^{-3}}{2} - 48x^{2} + \frac{12}{5}x^{-1/5}x^{1/5}$ f100/=-7- 48x4 + 12 00 b) $f(x) = \sqrt[3]{7x+2} - 3(1-5x^2)^6$ (10 points) $f^1(x) = (7x+2)^{1/3} - 18(1-5x^2)^5 + (-10x^2)^{1/3}$ $f^{1}(x) = \frac{1}{3} \frac{1}{17x+12} \frac{1}{18} \frac{1}{18} \frac{1}{19x+12} \frac{1}{18} \frac{1}{19x+12} \frac{1}{18} \frac{1}{19x+12} \frac{1}{18} \frac{1}{19x+12} \frac{1}{19x+12} \frac{1}{18} \frac{1}{19x+12} \frac{1}{19x+12} \frac{1}{18} \frac{1}{19x+12} \frac{1}{19x+12}$ c) $f(x) = 5(6x - 9x^3)^7$ (10 points) $f'(x) = 3S(0x - 9x^3)^6 \cdot (6 - 27x^2)$ f1/x1= 3510-27x2/16x-9x3)6



CLASSWORKS

More rules on derivatives (with out functions)

and an							
- 1		More on rul By: Des	es of derivat signing team	ives	9]	- Technique Departaria Preparatoria	
Name:	Barbara	Alvear	1	AOIST	10137 Da	te: 25/09/17	
1.	If $f(5) = 1$, $f'(5) =$	6, $g(5) = -3$	$g^*(5) = 2$	Find the	values of	/	
	a) $(f \cdot g)'(5) = f \cdot f$ b) $(f / g)'(5) = g \cdot f$ c) $(g / f)'(5) = g \cdot f$ If $f(3) = 4$, $g(3) = -$ a) $(f + g)'(3) = f^{1}(5)$ b) $(f \cdot g)'(3) = f \circ g^{1}$ c) $(f / g)'(3) = g \cdot f \cdot f$ g	$g_{1}^{(1)} + g_{1}^{(1)} = 0$ $g_{2}^{(1)} - g_{1}^{(1)} = 0$ $f_{2}^{(2)} = 0$ $f_{2}^{(2)} = 0$ $g_{1}^{(1)} = 0$ $f_{2}^{(1)} = 0$ $f_$	$= (1)(2)$ $= -3)(\omega) - (1)(2)^{n} - (1)(2)^$	$\frac{+(-3)}{(2)} = -\frac{1}{(2)}$ = -1 (4) = -1 (4) (2) (-6) (4) (5)	(0) = 2 $(8-2) = (-2)^{20}$	$-18 = -16 (f \cdot g^{1})(5) = -10$ $f(g)^{1}(5) = -20$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{12} = 8 (f \cdot g)^{1}(3) = 8$ $\frac{1}{9}$ $\frac{1}{9}$	
$h(t_{1}) = fg_{1} + gf_{1}$	h(x) = f(x)g(x)	, use the table	to find h'	(-1), h'(0)	and $h'(1)$	Land Street Street	
h'(=) = (2)(2) + (1)1	x x	<i>f</i> (<i>x</i>)	f'(x)	<i>g</i> (<i>x</i>)	g'(x)	KOTACOLANDE	
れる)= AHV	-1	2	1	-1	2	h'(0) = (-1)(37 + (-1)(0))	
n'1-1)=5	1	2	-1	0	5	h(0)=-3	
h(1)=(2)(5)+(0)(1) h(1)=10 4. If h	h(x) = f(x)/g(x)	f(x), use the ta	ble to find h f'(x) 1 0	g(x) g(x) 1 -1)) and $h'(1)$ g'(x) 2 3	$h^{1}(-1) = \frac{(1)(1) - (2)(2)}{1^{2}} = \frac{1}{2^{2}}$ $h^{1}(0) = \frac{(-1)(0) - (-1)(2)}{(-1)^{2}} = 3$	
ones	1	2	-1	2	5	(-1)2 = 3	
graphs 0. Find P'(2) = 1 P'(2) = 2 P'(2) = 3 P'(2) = 0 $F(2) = 0F(2) = 0$	(12) + (2) = 2 (12) + (2) = 2 $(12) = \frac{1}{2}$	b) Find		(x), where	F and G ar		I

HW: Rules of Differentiation- Exponential Functions

WW: Rules of Differentiation-Exponential Functions Image: State Sta								
1000	5 y (i) y (ii)							
4 (£,	1) $f(x) = \sqrt{2x + e^{10x}}$ $f(x) = (2x + e^{10x})^{1/2}$ $f(x) = 1/2 (2x + e^{10x})^{1/2} (2 + 10e^{10x})$ $f(x) = 1/2 (2x + e^{10x}) \frac{1}{2(7x + e^{10x})}$ $\frac{(2 + 10e^{10x})}{12(7x + e^{10x})}$ $\frac{(2 + 10e^{10x})}{12(7x + e^{10x})}$ $f(x) = 2\sqrt{2x + 10e^{10x}}$ $f(x) = \frac{2x^3}{e^{2x}}$ $f^{1}(x) = 2x^{\frac{3}{2}} (-2e^{2x}) - e^{2x} (0x^{\frac{3}{2}})}{(e^{7x})^2}$ $\frac{1}{1(x)} = 2x^{\frac{3}{2}} (-2x + 3)}{e^{2x}}$	2) $f(x) = 4e^{\frac{x}{2}} + \frac{5}{2x^2}$ $f(x) = \frac{1}{2} + \frac{2}{2}x^{-3}$ $f(x) = 2e^{-x/2} + (-5)x^{-3}$ $f(x) = 2e^{-x/2} + (-5)x^{-3}$ $f^{-1}(x) = 2e^{-x/2} - \frac{5}{\sqrt{3}}$ 4) $y = x^4(e^{k/2z})$ $y' = 4x^3 (-2e^{1-2x})$ $y' = 2x^3(e^{1-2x})(-x+2)$						
222	$5) y = \frac{3}{e^{2x^2}}$ $= \frac{3}{2} (e^{-2e^2})$ $= \frac{-12 \cdot 3}{e^{-2e^2}}$ $7) y = e^{3x} (2x - 1)^4$ $= e^{5x^2} A (2x - 1)^5 \cdot (2x)$	6) $y = \frac{e^{x^2}}{2x}$ $y = 2x \left(\frac{2x}{2x^3}\right) - (e^{x^2})(2)$ $y' = e^{x^2} \cdot 2x^{-1}$ $y = 2x \left(\frac{1}{x}\right) - (e^{x^2})(2)$ $y' = e^{x^2} \cdot 2x^{-1}$ $y = 2x \left(\frac{1}{x}\right) - (e^{x^2})(2)$ $y' = \frac{2e^{x^2} x^2}{2x^2}$ $y = 2 - \frac{2e^{x^2} 2x^{-2}}{2e^{x^2} 2x^{-2}}$ 8) $f(x) = \frac{e^{2x}}{6} + 2x^5$ $F(x) = e^{-1x} \cdot (e + 7x^{-5})$						
y -	$e^{5x} \cdot \{(2x-1)\}^{3}$ $3e^{x} \cdot \{(2x-1)\}^{3}$ $e^{5x}((2x-1))^{3}((5+1)x)$	$f(x) = 2e^{2} \cdot (0 \cdot 10x^{A})$ $f(x) = 12e^{2} \cdot 10x^{A}$ $f(x) = \frac{e^{2x}}{2} + 10x^{4}$						

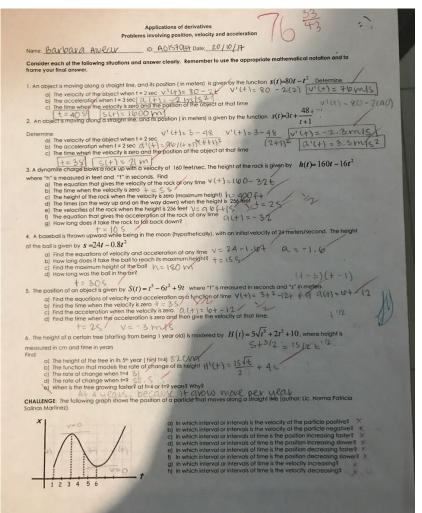
Partial Project

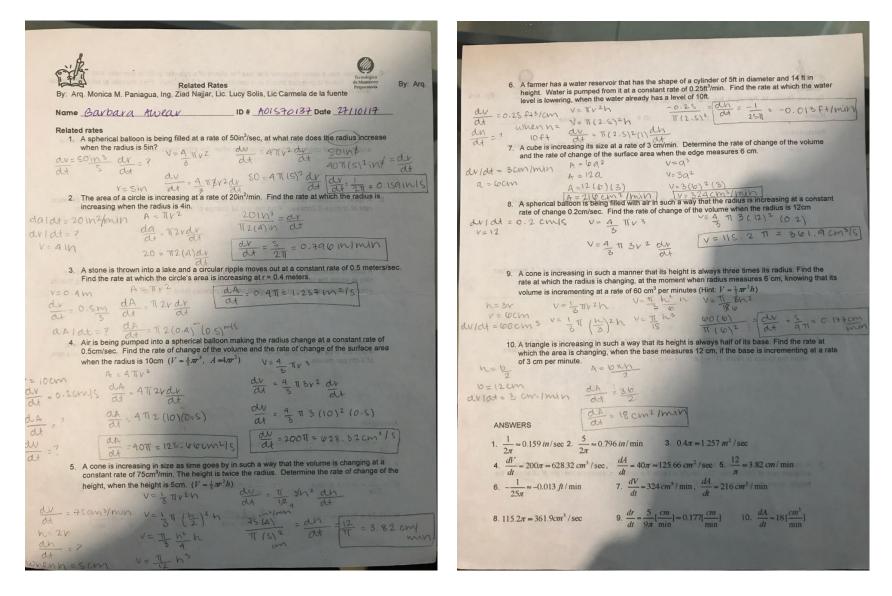
https://www.geogebra.org/m/ru7QjnYN

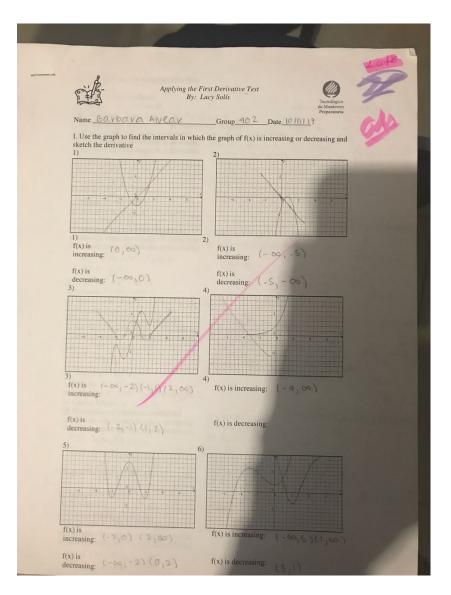
THIRD PARTIAL

QUIZZES

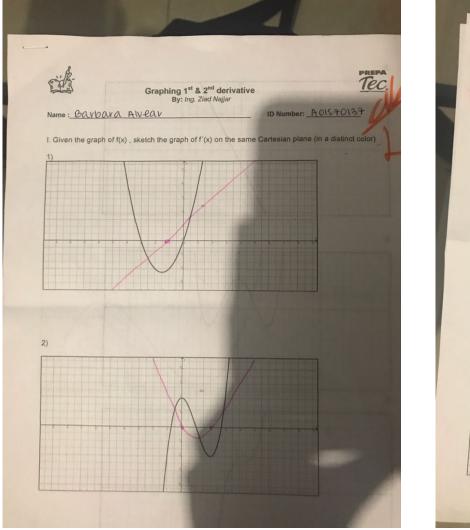
Prepa Tec Calculus I 3rd partial Quiz # 1B Mat. A01570137 Name Barbara Alvear I. Determine if true or false for each of the following statements (10 points each) 1. The third derivative of $y = 4e^{3x}$ is $\frac{d^3y}{dx^3} = 36e^{3x}$ $y'' = 12.e^{3x}$ $y'' = 3 (c e^{3x})$ y"= 108 e 3x The derivative of $4x^2y - 8x = 6y^2 + 5$ is $\frac{dy}{dx} = \frac{2}{2x - 3y} = \frac{(4x^2y^4 + 8xy^3) - (2yy^4) = 8}{y^4 = 8 - 8x^3} = 8(1 - xy^3)$ 2. 8 103. K T The derivative of $y = x^{3x+1}$ is $y' = x^{3x}(3x \ln x + 3x + 1)$ 4. X The area of a circle is decreasing at a rate of 40 cm² per hour. Then the rate at which its = 2 (-xu) radius is changing when its radius measures 30 cm is $\frac{dr}{dt} = \frac{2}{3\pi} \left[\frac{cm}{hour}\right]$ $\stackrel{P}{\to} = \pi \chi^{2}$. A = $\pi 2\chi^{2}$ 40=TT2 (30) dr. II. Answer the following problem. (10 points each letter) A baseball is thrown upward while being in the moon (hypothetically), with an initial velocity of 80 meters/second. The height of the ball is given by $s = 80t - 8t^2$ a) The equation that gives the velocity of the ball at any time. b) The time when velocity is zero (that is the time to reach the maximum height) 0 = 80 - 16(5)t=56 c) The maximum height of the ball (that is when velocity is zero) 80(5) - 8(5) d) The times (on the way up and on the way down) when the height is at 128 feet. 128 = 906 - 8t e) The velocities of the ball when the height is 128 feet. V = ASmic V=-48m15 f) The equation that gives the acceleration of the ball at any time. a = -14

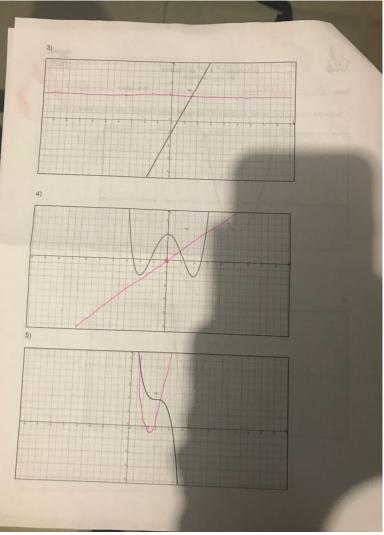

Prepa Tec Calculus I 3rd partial Quiz # 2B	
Name Baybaya Alveav Mat. A01570137 59	
Determine if true or false for each of the following statements. (5 points each) 1. In function $f(x) = -3x^3 - 3x^2 + 14$ has only one critical point. $-9 \times 2 - 0 \times -5 \times (5 \times -2)$ 2. The function $f(x) = -3x^3 - 3x^2 + 14$ has only one critical point. $-9 \times 2 - 0 \times -5 \times (5 \times -2)$ 2. The function whose second derivative exists on an open interval, if $f'(x) > 0$ for all x in that	
interval, then the graph of its concave downward on that interval. 3. If the "a" is a critical point of the function f(x) that is continuous, and if $f'(x) < 0$ at (-=, a) and $f'(x) > 0$ at (a, =), then, f(x) has a relative maximum at (a, f(a)).	
54. The function $f(x) = x^4 - 4$ has a relative maximum at $[0, -4]$ $0 = 4 \times 3$ $0 = 4 (\times 3)$ $(-\infty, 0)(0, 1)(1, \infty)$	
Choose the right answer (10 points each)	
(1, 1, 1) If (c, f(c)) is a critical point, then (c) f(c)=0 (c) f'(c)=0 (c) f'(c)=0 (c) f'(c)=0 (c) f'(c)=0	
 (X) PAccording to the second derivative test if f''(c) < 0, then (c) is concave upward. 	
λ (b) f(c) is relative maximum. (c) f(c) is a critical point.	
D) f(c) is a relative minimum. f'(x) = 20 - 2x $X = 103 (6) Understand f(x) = 20x - x^2has a critical point: 2 (10 - x)$	
3. (B) The function $f(x) = 20x - x^{2}$ has a critical point: 2 (10 - x) A) x=-10 (B) x=10 (C) x=1 (D) x=0	
104. (1) It f''(c) > 0then f(x) is: (a) concave downward (b) concave downward (c) decreasing (c) decreasing	
5. [1] It can be determined if the curve of y=f(x) has a change of concavity: (A) Inflection point B) Critical point C) x-intersect D) y-intercept	
6. (\checkmark) The function $y = -x^3 + 6x^2$ has a relative maximum at: $-3 \times (\times -4)$ (- $\sim_0 \times 0.0(0, 4) (4, \infty)$ (-	
7. (\checkmark) The function $y = x^3 - 3x^2$ has a relative minimum at: (A) (12) B) (3.0) C) (0.0) (24) (A) (3.2)	
Answer the following showing your entire procedure. $3 \times 2 - (0 \times (-\infty_1 \circ 1)(0, 2)(2, \infty))$ $3 \times (\times -2)$	
1. The following graph represents $f(x)$ use it to sketch the graphs of $f'(x)$. (10 points) +	
2 (2,-1)	
10	
	6

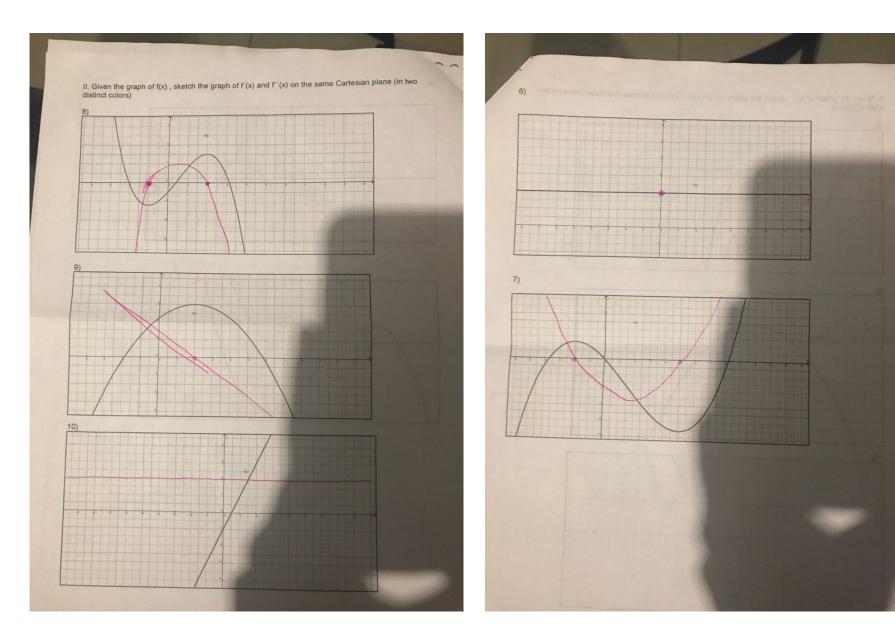

CLASSWORKS


Applications of derivatives: Problems involving position, velocity and acceleration

Related rates




Applying the First derivative Test



11. For each of the following functions find: 1) $f(x) = x^3 - 6x^2 + 9x + 1$ Int (-00,1)(1,3)(3,00) a) Domain (-00,00) or R value o 2 4 b) Derivative of $f(x) = 3x^2 - 12x + 9$ c) Critical Values f'(x)=0 a doesn't exist sign + d) Maximum and minimum coordinates $0 = 3 x^2 - 12 x + 9$ Inc e) Intervals where the function is increasing $0 = x^2 - 4x + 3$ f) Intervals where the function is decreasing 0 = (x - 3)(x + 1)e) (-00,1)(3,00) $\chi = 3$ F) (1,3) 2) $y = \frac{1}{3}x^3 + \frac{1}{2}x^2 - 6x + 8$ a) Domain (- 00) 60) b) Derivative of $f(x) \neq^{1}(x) = x^{2} + y = 0$ c) Critical Values pick)=0 d) Maximum and minimum coordinates 0= x2+ x-6 e) Intervals where the function is increasing 0 = (x+3)(x-2)f) Intervals where the function is decreasing X=-3 e) (- 00, -3)(2,00) x = 2 F) (-3,2) 3) $f(x) = x^3 + x^2 - 5x - 5$ a) Domain (- 60, 60) b) Derivative of $f(x) f'(x) = 3x^2 + 2x - 5$ c) Critical Values $f^{1}(x) = 0$ 0=(3x2+2x-5) d) Maximum and minimum coordinates e) Intervals where the function is increasing 0=x2+2/3x-5/3 f) Intervals where the function is decreasing X=-5/2 4) $f(x) = x^4 - 8x^2 + 1$ a) Domain (-00,00) b) Derivative of $f(x) \neq I(x) = A \times 3 - f(x)$ c) Critical Values $f'(\chi) = 0$ d) Maximum and minimum coordinates 0-4×3-16× e) Intervals where the function is increasing f) Intervals where the function is decreasing 5) $g(x) = \frac{x^4}{4} - \frac{x^3}{3} - 3x^2 + 1$ a) Domain (-00)00 b) Derivative of $f(x) \in f(x)$ c) Critical Values (104)= 0 d) Maximum and minimum coordinates e) Intervals where the function is increasing f) Intervals where the function is decreasing

Graphing 1st & 2nd derivative

ACTIVITY: VALOR DE LA DIVERSIDAD

https://www.geogebra.org/m/eDwdfAfq