Soluzione della trisezione dell'angolo tramite la concoide di Nicomede

Metodo

Utilizzo di curve (concoide di Nicomede).

Come visto in precedenza, la concoide viene costruita per mezzo di "slittamento di righelli".

- Sia $B\hat{A}C$ l'angolo di cui si vuole trovare la terza parte.
- Sia CD la retta perpendicolare ad AB passante per C.
- Si costruisca la concoide di Nicomede di polo A, asse CD e costante t=2AC.
- Sia j la retta parallela ad AB passante per C.
- Sia X l'intersezione tra j e la concoide.
- Allora $B\hat{A}X = \frac{1}{3}B\hat{A}C$.

Costruzione tramite GeoGebra

- 1. Si costruiscano gli assi cartesiani.
- 2. Per semplicità e senza perdere generalità, siano A=(0,0), B sul semiasse positivo delle ordinate e C nel secondo quadrante.
- 3. Si costruisca la retta AC.
- 4. Si costruisca la retta parallela all'asse delle ascisse passante per il punto C. Sia D il punto di intersezione di tale retta con l'asse delle ordinate.
- 5. Sia j la retta parallela all'asse delle ordinate e passante per C.
- 6. Sia E un generico punto tra C e D.
- 7. Si costruisca la retta passante per A e per E.
- 8. Si definisca t = 2AC.
- 9. Si costruisca la concoide di Nicomede di polo A, asse CD e costante t:
 - ullet Si costruisca la circonferenza di centro E e raggio t;
 - Sia X il punto di intersezione di tale circonferenza con la retta AE, dalla parte di E;
 - Si renda attiva la traccia di X.
- 10. Sia $\Delta = Distanza[X, j]$ e si renda visibile il suo valore sullo schermo.
- 11. Si rendano visibili i valori delle ampiezze degli angoli $B\hat{A}C$ e $B\hat{A}X$

Utilizzo

Si trasli il punto E fino a quando il punto X non giace sulla retta j, cioè fino a quando $\Delta=0$. In tale configurazione, $B\hat{A}X=\frac{1}{3}B\hat{A}C$.

Dimostrazione

Sia F il punto medio del segmento \overline{EX} e si costruisca il segmento \overline{FC} .

- $\overline{EF}=\overline{FC}=\overline{FX}=\frac{t}{2}=\overline{AC}$ poiché il triangolo $\triangle ECX$ è rettangolo.
- Quindi i triangoli $\triangle EFC$, $\triangle FCX$ e $\triangle ACF$ sono isosceli $\Rightarrow C\hat{A}F = C\hat{F}A$ e $F\hat{C}X = F\hat{X}C$.
- $C\hat{A}F = C\hat{F}A = F\hat{C}X + F\hat{X}C = 2*F\hat{X}C$, poiché $C\hat{F}A$ è l'angolo esterno al triangolo isoscele $\triangle CFX$.
- $C\hat{X}F = X\hat{A}B$ perché angoli alterni interni.
- Quindi $C\hat{A}X = C\hat{A}F = 2 * B\hat{A}X$.
- Quindi $B\hat{A}C=C\hat{A}X+X\hat{A}B=2*B\hat{A}X+B\hat{A}X=3*B\hat{A}X$ $\Rightarrow B\hat{A}X=\frac{1}{3}B\hat{A}C.$