Name \qquad Angel Geacrac IDAOIS70288 Date \qquad

Solve the integrals

1) $\int 2 x \sqrt{x+2} d x \frac{4(x+2)^{5 / 2}}{5}-\frac{8(x+2)^{3 / 2}}{3}+$
2) $\int 8 x^{3}\left(2-x^{2}\right)^{9} d x$
3) $\int \frac{8 e^{2 x}}{5-3 e^{2 x}} d x-\frac{4}{3} \ln \left|5-3 e^{2 x}\right|$

$$
\begin{aligned}
& 1+ \\
& C
\end{aligned}
$$

3) $\int \frac{6 \operatorname{Ln} \sqrt{x}}{x} d x$ $6(\ln \sqrt{x})^{2}+c$
4) $\int 15 x^{2}(3 x+2)^{5} d x$

$$
\begin{aligned}
& \text { 2) } d x\left[\frac{(3 x+2)^{8}}{72}-\frac{(3 x+2)^{4}}{63}+\frac{(3 x+2)^{6}}{54}\right]+1 \\
& \text { 1 }
\end{aligned}
$$

11) $\int 6 x^{2} \cdot \sqrt[3]{7+3 x} d x$
12) $\int \frac{x^{2}}{(5-3 x)^{4}} d x-\frac{1}{3}\left[\frac{1}{-4\left(3-3 x x^{2}\right.}+\frac{10}{18(5-3 x)^{2}}-\frac{d 5}{\left.2(5-3)^{3}\right)^{3}}\right]+c$
13) $\int \frac{12 x^{2}}{\left(4-x^{3}\right)^{5}} d x \frac{1}{\left(4-x^{3}\right)^{4}}+$
14) $\int \frac{4 x}{1-2 x} d x$

$$
\frac{4}{-2}\left[\frac{|m| 1-2 x \mid}{2}-\frac{\mid-2 x}{2}\right]+c
$$

12) $\int_{-2}^{2} 3 x \sqrt{2 x+5} d x$

13) $\int_{0}^{2} \frac{2 x d x}{(3 x+4)^{3}}$

14) The acceleration of an object is given by $a(t)=12 t \sqrt{2 t+1}$ in $\mathrm{m}^{2} / \mathrm{sec}$. Find the equation of velocity in $\mathrm{m} / \mathrm{sec}$ if the initial velocity of the object $(\mathrm{t}=0)$ is $20 \mathrm{~m} / \mathrm{sec}$

$$
\begin{aligned}
& V(t)=\frac{6}{5}(2 t+1)^{5 / 2}-2(2 t+1)^{3 / 2}+20.8 a(t)=\frac{40 t}{(1+2 t)^{3}} \\
& \text { The equation of acceleration of an object is given by }
\end{aligned}
$$

16) The equation of acceleration of an object is given by
the equation of velocity if we know that after 5 min the velocity is $75 \mathrm{ft} / \mathrm{min}$?
in $\mathrm{ft} / \mathrm{min}^{2}$. Determine

Rus. Arr MAnia AA Ponisruıs

It helped us to understand and to see that not all integrals will be so easy and direct, and that sometimes we will need to do an extra step.

