
my mistake in this quiz was that I don't know why I wrote 3 rather than 2 during the antiderivative of the first derivative omg

Name Brenda Diaz Sánchez id Aolst0325date: $26 / 04 / 1999$

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. (12.5 pts

each one)

LA TE

Evaluate the integral.

1) $\int 4 x e^{x} d x$
$u=4 x$
$\begin{aligned} d v & =e^{x} \\ v & =e^{x}\end{aligned}$
A) $4 x e^{x}-4 e^{x}+C$
$d v=4 d x$
B) $x e^{x}-4 e^{x}+C$
C) $4 e^{x}-e^{x}+C$
D) $4 e^{x}-4 x e^{x}+C$
2)

2)

2) $\int e^{5 x} \cos 4 x d x$

> B) $\frac{1}{41}\left[4 e^{5 x} \sin 4 x+5 \cos 4 x\right]+C$
> D) $\frac{e^{5 x}}{41}[4 \sin 4 x-5 \cos 4 x]+C$

3) $\int(2 x-1) \ln (24 x) d x$

$$
\text { B) }\left(x^{2}-x\right) \ln 24 x-\frac{x^{2}}{2}+2 x+C
$$

C) $\left(\frac{x^{2}}{2}-x\right) \ln 24 x-\frac{x^{2}}{4}+x+C$

$$
\text { D) }\left(x^{2}-x\right) \ln 24 x-x^{2}+x+C
$$

4) $\int 23 x \cos \frac{1}{2} x d x$

$$
x^{2} \ln 24 x-\frac{x^{2}}{2}-x \ln (24 x)-
$$

A) $23 x \sin \left(\frac{1}{2}\right) x-46 \cos \left(\frac{1}{2}\right) x+C$
C) $92 \sin \left(\frac{1}{2}\right) x-46 x \cos \left(\frac{1}{2}\right) x+C$
(B) $6 x \sin \left(\frac{1}{2}\right) x+92 \cos \left(\frac{1}{2}\right) x+C$
D) $23 \sin \left(\frac{1}{2}\right) x+46 x \cos \left(\frac{1}{2}\right) x+C$
5) $\int e^{2 x} x^{2} d x$

$$
\begin{aligned}
& \text { B) }(1 / 2) x^{2} e^{2 x}-(1 / 2) x e^{2 x}+(1 / 4) e^{2 x}+C \\
& \text { D) }(1 / 2) x^{2} e^{2 x}-x e^{2 x}+(1 / 4) e^{2 x}+C
\end{aligned}
$$

Third Partial
QUIZ \# $2 B$.
LATE
, 1

$$
\ln (24 x) \cdot x^{2}-\frac{x^{2}}{2}-
$$

LATE
(6) $\int\left(x^{2}-3 x\right) e^{x} d x$

$$
\int x^{2} x^{2} e^{x}-\int 3 x \frac{e^{x}}{d y}
$$

$u=x^{2} \quad d v=e^{x} \quad u=3 x \quad d v=e^{x}$
$d u=2 x \quad v=e^{x} \quad d u=3 \quad y=e^{x}$

$$
\begin{aligned}
& \text { (3) } \int(2 x-1) \ln (24 x) d x \\
& \cos _{2 \text { coses } 3} \int 2 x \ln (24 x)-\int \ln (24 x)
\end{aligned}
$$

