ArchimedesTwinCircles

Archimedes proved that the purple circle, tangent to the enclosing circle, the red circle and the perpendicular dividing line, is congruent to the green circle tangent to the enclosing circle, the blue circle and the dividing line. The trace checkbox shows a tracing point I used to help figure out that the centers of the twin circle should be on parabolas. (If you turn the point on, try to move it while keeping two of the distances equal.) The parabolas checkbox shows the parabolas that intersect to find the centers of the twin circles. They were defined using GeoGebra's parabola tool that has input of the focus and the directrix. I first saw the theorem at the Futility Closet, [url]http://www.futilitycloset.com/2014/03/20/archimedes-twin-circles/[/url] My think aloud about making this is on my blog, [url]http://mathhombre.blogspot.com/2014/03/archimedes-twin-circles.html[/url]

 

John Golden

 
Type de ressources
Activité
Balises
archimedes  circle  closet  directrix  futility  parabola  tangent 
Tranche d'âges
15 – 18
Langue
English
 
 
Version GeoGebra
4.4
Vues
4284
Contacter l'auteur de la ressource.
Licence
CC-BY-SA, GeoGebra Terms of Use
Matériels dérivés
ArchimedesTwinCircles
partagé par xlenchik
 
 
© 2025 International GeoGebra Institute