Point de Fermat - Steiner - Torricelli

Ce point M est défini par [math]\widehat{AMB}=\widehat{BMC}=\widehat{CMA}=\frac{2\pi}3[/math]. On peut le définir comme intersection de deux arcs de cercle défini chacun par l'ensemble des points voyant les côtés avec cet angle. Mais pour prouver que ce point est le bon, il faut "déplier" la somme des trois longueurs en une ligne droite. Ainsi, [math]MB+MC\geq MA' [/math]où A' est le troisième sommet du triangle équilatéral A'BC. Ainsi, le point réalisant le minimum est nécessairement sur [AA'] et de même sur [BB'] et [CC'], qui sont donc concourants.

 

christian.mercat

 
Material Type
Activity
Tags
triangle  fermat  angle  équilatéral 
Target Group (Age)
11 – 14
Language
French / Français‎
 
 
GeoGebra version
4.2
Views
2384
Report a problem
 
© 2018 International GeoGebra Institute