tangent circle problems

Let ABC be a triangle. Ac,Bc lie on AB; Ba,Ca lie on BC; Cb,Ab lie on AC. Such that (BBaBc), (CCaCb), (AAbAc) tangent with (ABC) BcBa meets CaCb at A'; BcBa meets AcAb at C'. AcAb meets CbCa at B'. 1-(C'BcAc) tangent with (A'B'C') , (BBcBa), (AAcAb) 2-BB',AA',CC' are concurrent at D 3-Oa,O'a are center of (AAcAb) and (A'BaCa) respectively. Denote Oc, O'c; Ob,O'b cyclically then OaO'a; ObO'b; OcO'c are concurrent at E 4-O,O' are center of (ABC) and (A'B'C'). Then O,O',D,E collinear

 

Đào Thanh Oai

 
Resource Type
Activity
Tags
circle  collinear  concyclic  cyclic  dao  midpoints  oai  perpendicular  quadrilateral  tangential  thanh thebault triangle Show More…
Target Group (Age)
19+
Language
English (United Kingdom)
 
 
GeoGebra version
4.4
Views
765
Report a problem
 
 
© 2018 International GeoGebra Institute