tangent circle problems

Let ABC be a triangle. Ac,Bc lie on AB; Ba,Ca lie on BC; Cb,Ab lie on AC. Such that (BBaBc), (CCaCb), (AAbAc) tangent with (ABC) BcBa meets CaCb at A'; BcBa meets AcAb at C'. AcAb meets CbCa at B'. 1-(C'BcAc) tangent with (A'B'C') , (BBcBa), (AAcAb) 2-BB',AA',CC' are concurrent at D 3-Oa,O'a are center of (AAcAb) and (A'BaCa) respectively. Denote Oc, O'c; Ob,O'b cyclically then OaO'a; ObO'b; OcO'c are concurrent at E 4-O,O' are center of (ABC) and (A'B'C'). Then O,O',D,E collinear

 

Đào Thanh Oai

 
Material Type
Activity
Tags
thebault  tangential  circle  quadrilateral  triangle  collinear  midpoints  perpendicular  dao  thanh  oai cyclic concyclic Show More…
Target Group (Age)
19+
Language
English (United Kingdom)
 
 
GeoGebra version
4.4
Views
754
Report a problem
 
 
© 2018 International GeoGebra Institute