Some problems of seven circle 3

Let six points A,B,C,A', B', C' lie on a circle. B'C' meet AB,AC at Ac,Ab respectively. B'A' meets CA,CB at Cb,Ca reslpectively. A'B' meets BA,BC at Bc,Ba respectively.Construct radical axis of six circles (AAbAc), (B'AbCb), (CCbCa), (A'CaCb), (BBcBa), (C'AcBa) and (O). Intesection of the radical axis are $D,E,F,G,H,I$ and $Q,R,S,T,U,V$ show in the figure. Prove that a- $D,E,F,G,H,I$ lie on a conic; and $Q,R,S,T,U,V$ lie on a conic b- six lie EH,FI,GD,RU,SV,TQ are concurrent

 

Đào Thanh Oai

 
Material Type
Activity
Tags
thebault  tangential  circle  quadrilateral  triangle  collinear  midpoints  perpendicular  dao  thanh  oai cyclic concyclic theorem seven Show More…
Target Group (Age)
19+
Language
English (United Kingdom)
 
 
GeoGebra version
4.4
Views
808
Report a problem
 
 
© 2018 International GeoGebra Institute