Viet Nam hexagon

Let ABC be a triangle, D be any point on the plane. AD,BD,CD meet (ABC) again at A1,B1,C1. H is on BD such that HA perpendicular with AB. Ab is circumcenter of circle (AB1H). Define Ab,Ac,Ba,Bc,Ca,Cb cyclically. Then six points AbCbCaBaBcAc are the hexagon circumscribed. I named the result is Viet Nam hexagon

 

Đào Thanh Oai

 
Resource Type
Activity
Tags
brianchon  collinear  concurrent  hexagon  midpoint  nam  theorem  viet 
Target Group (Age)
19+
Language
English (United States)
 
 
GeoGebra version
4.2
Views
828
Report a problem
 
 
© 2018 International GeoGebra Institute