Four Mutually Tangent & Exterior Circles

Set aside those circles which touch the bounding circle. The remaining circles satisfy a particular case of Apollonius' Tangency problem. ______________ The Tangent Circle Problem: [list] [*]1. Tangent along the rim: solve for k [*]2a. Initial position: [url]http://www.geogebratube.org/material/show/id/58360[/url] [*]2b. Tangent to equal circles: [url]http://www.geogebratube.org/material/show/id/58455[/url] [*][b]→3a. Four mutually tangent & exterior circles (Apollonius)[/b] [*]3b. Vector reduction: [url]http://www.geogebratube.org/material/show/id/58461[/url] [/list] [list] [*]Affine Transformation [url]http://www.geogebratube.org/material/show/id/58177[/url] [*]Reflection: Line about a Circle [url]http://www.geogebratube.org/material/show/id/58522[/url] [*]Reflection: Circle about a Circle [url]http://www.geogebratube.org/material/show/id/58185[/url] [*]Circle Inversion: The Metric Space [url]http://www.geogebratube.org/material/show/id/60132[/url] [/list] Solution: [list] [*]Sequences 1: Formation [url]http://www.geogebratube.org/material/show/id/58896[/url] [*]Sequence 1: Formation [url]http://www.geogebratube.org/material/show/id/59816[/url] [*]Sequence 1: Iteration 1 [url]http://www.geogebratube.org/material/show/id/59828[/url] [*]Example of equivalent projections: [url]http://www.geogebratube.org/material/show/id/65754[/url] [*]Final Diagram: [url]http://www.geogebratube.org/material/show/id/65755[/url] [/list]

 

Ryan Hirst

 
Material Type
Activity
Tags
apollonius  tangency  locus  equidistant 
Target Group (Age)
19+
Language
English (United States)
 
 
GeoGebra version
4.2
Views
8033
Report a problem
 
 
© 2018 International GeoGebra Institute