Let one circle enclose another. 
Proposition: [i]to construct a chain of tangent circles in the ring.[/i]
General solution in a closed figure: bounding circle and image superimposed.  
n varies the radius of the enclosed circle.  The limiting figure as nāā, is the Shoemaker's knife.
_____________________
Archimedes' Arbelos:
[list]
[*]1a. Inscribe a circle in the arc.[url]http://www.geogebratube.org/material/show/id/54105[/url] 
[*]1b.  Tangent circles in the arc (Solution 1).
[*]1c.  Vector Reduction: [url]http://www.geogebratube.org/material/show/id/54557[/url]
[*]1d.  Ellipse from parameter, scale and rotation:[url]http://www.geogebratube.org/material/show/id/55256[/url]
[*]1e.  Final Construction:  [url]http://www.geogebratube.org/material/show/id/54592[/url]
[*]2a.  Let one circle enclose another.
      Inscribe a third circle in the ring:  [url]http://www.geogebratube.org/material/show/id/54595[/url] 
[*]2b.  Tangent circles in the ring. [url]http://www.geogebratube.org/material/show/id/54596[/url] 
[/list]
3.  Cyclic Solution:
[list]
[*]3a.  An outer ring of tangent circles: [url]http://www.geogebratube.org/material/show/id/55009[/url] 
[*]3b.  Determine the projection.
[*][b]ā3c.  Final Construction.[/b]
[/list]