Proposition: [i]To inscribe a chain of circles in the ring.[/i]
... but I would also like to shape the ring so that the inscribed circles make a closed chain...
_____________________
Archimedes' Arbelos:
[list]
[*]1a. Inscribe a circle in the arc.[url]http://www.geogebratube.org/material/show/id/54105[/url] 
[*]1b.  Tangent circles in the arc (Solution 1).
[*]1c.  Vector Reduction: [url]http://www.geogebratube.org/material/show/id/54557[/url]
[*]1d.  Ellipse from one parameter, scale and rotation:[url]http://www.geogebratube.org/material/show/id/55256[/url]
[*]1e.  Final Construction:  [url]http://www.geogebratube.org/material/show/id/54592[/url]
[*]2a.  Let one circle enclose another.
      Inscribe a third circle in the ring:  [url]http://www.geogebratube.org/material/show/id/54595[/url] 
[*][b]→2b.  Tangent circles in the ring.[/b]
[/list]
3.  Cyclic Solution:
[list]
[*]3a.  An outer ring of tangent circles: [url]http://www.geogebratube.org/material/show/id/55009[/url] 
[*]3b.  Determine the projection.
[*]3c.  Final Construction: [url]http://www.geogebratube.org/material/show/id/55883[/url]
[/list]