# Archimedes' Arbelos: 1

I have divided the problem into a number of subproblems. First, the matter of inscribing a circle in the knife ark. _____________________ Archimedes' Arbelos: [list] [*][b] →1a. Inscribe a circle in the arc.[/b] [*]1b. Tangent circles in the arc (Solution 1). [*]1c. Vector Reduction: [url]http://www.geogebratube.org/material/show/id/54557[/url] [*]1d. Ellipse from one parameter, scale and rotation: [url]http://www.geogebratube.org/material/show/id/55256[/url] [*]1e. Final Construction: [url]http://www.geogebratube.org/material/show/id/54592[/url] [*]2a. Let one circle enclose another. Inscribe a third circle in the ring: [url]http://www.geogebratube.org/material/show/id/54595[/url] [*]2b. Tangent circles in the ring. [url]http://www.geogebratube.org/material/show/id/54596[/url] [/list] 3. Cyclic Solution: [list] [*]3a. An outer ring of tangent circles: [url]http://www.geogebratube.org/material/show/id/55009[/url] [*]3b. Determine the projection. [*]3c. Final Construction: [url]http://www.geogebratube.org/material/show/id/55883[/url] [/list]

Resource Type
Activity
Tags
archimedes  classical  geometry  knife  pappus  shoemaker
Target Group (Age)
19+
Language
English (United States)

GeoGebra version
4.2
Views
5323

© 2023 International GeoGebra Institute