CCGPS AG 5.6.2 Example 3

A football is kicked and follows a path given by [math]y = –0.03(x – 30)^2 + 27[/math], where [math]y[/math] represents the height of the ball in feet and [math]x[/math] represents the ball’s horizontal distance in feet. What is the maximum height the ball reaches? What horizontal distance maximizes the height? What are the zeros of the function? What do the zeros represent in the context of the problem? What is the total horizontal distance the ball travels? If the ball reaches a height of [math]20.25[/math] feet after traveling [math]15[/math] feet horizontally, will the ball make it over a [math]10[/math]-foot-tall goal post that is [math]45[/math] feet from the kicker?

 

Walch Education

 
Tipo de Material
Atividade
Palavras-chaves
ball  distance  feet  football  function  height  horizontal  maximum  path  vertical  zeros Ver Mais…
Grupo alvo (idade)
15 – 18
Idioma
English (United States)
 
 
Versão do GeoGebra
4.4
Vistas
1888
Contatar autor do recurso
Licença
CC-BY-SA, GeoGebra Terms of Use
Materiais Derivados
CCGPS AG 5.6.2 Example 3
Compartilhado por GeoGebra Materials Team
 
© 2025 International GeoGebra Institute