Cuadrilatero medio

CLUB GEOGEBRA IBEROAMERICANO - CUADRILÁTEROS Los vértices del cuadrilátero son puntos libres, de modo que puedes moverlos y cambiar la forma del cuadrilátero. Elige la herramienta Punto medio y marca los puntos medios de los lados del cuadrilátero. Elige ahora la herramienta Polígono y construye el cuadrilátero formado por los puntos medios. Vamos a llamar cuadrilátero medio al cuadrilátero así obtenido. ¿Reconoces su forma? ¿Qué tipo de cuadrilátero es? ¿Te atreves a hacer alguna conjetura?
Mueve los vértices del cuadrilátero inicial y forma otros cuadriláteros convexos. Observa qué ocurre con el cuadrilátero medio, ¿se cumple lo que habías pensado? Prueba ahora con cuadriláteros cóncavos, ¿sigue cumpliéndose tu conjetura? Vamos a tomar ahora algunas medidas para contrastar lo que observas. Utiliza la herramienta Distancia o Longitud para medir las longitudes de los lados y la herramienta Ángulo para medir la amplitud de los ángulos del cuadrilátero medio. Mueve ahora los vértices y observa la variación de las medidas que has tomado. A la vista de tus observaciones, ¿qué tipo de cuadrilátero es? Traza ahora las diagonales del cuadrilátero medio y marca su punto de intersección. Utiliza para ello las herramientas Segmento entre dos puntos e Intersección de dos objetos. Observa atentamente la construcción. ¿Puedes demostrar ahora tu conjetura? También hay una relación importante entre las áreas del cuadrilátero inicial y de su cuadrilátero medio. Haz clic en Reiniciar. Activa la casilla Área y mueve el deslizador que aparece. Observa lo que ha ocurrido. ¿Qué relación hay entre el área del cuadrilátero inicial y el área de su cuadrilátero medio? Mueve ahora los vértices del cuadrilátero inicial. ¿Se verifica siempre esa relación?