Google ClassroomGoogle Classroom
GeoGebraClasse GeoGebra

IM 7.6.3 Lesson: Reasoning about Equations with Tape Diagrams

Select all the expressions that are equivalent to .

Cochez votre réponse ici
  • A
  • B
  • C
  • D
  • E
Vérifier ma réponse (3)

Explain how you know each expression you select is equivalent.

Select all the equations that match the diagram below.

Cochez votre réponse ici
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
Vérifier ma réponse (3)

Now explain your reasoning concerning the previous question:

Select all the equations that match the diagram below.

Cochez votre réponse ici
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
Vérifier ma réponse (3)

Explain your reasoning concerning the previous question:

Select all the equations that match the diagram below.

Cochez votre réponse ici
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
Vérifier ma réponse (3)

Explain your reasoning concerning the previous question:

Select all the equations that match the diagram below.

Cochez votre réponse ici
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
Vérifier ma réponse (3)

Explain your reasoning concerning the previous question:

Select all the equations that match the diagram below.

Cochez votre réponse ici
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
Vérifier ma réponse (3)

Explain your reasoning concerning the previous question:

Sort the equations into categories of your choosing.

Explain the criteria for each category.

Draw a tape diagram to match the equation: 114=3x+18.

Use any method to find values for and that make the equation true.

Draw a tape diagram to match the equation: 114=3(y+18).

Use any method to find values for and that make the equation true.

To make a Koch snowflake:

  • Start with an equilateral triangle that has side lengths of 1. This is step 1.
  • Replace the middle third of each line segment with a small equilateral triangle with the middle third of the segment forming the base. This is step 2.
  • Do the same to each of the line segments. This is step 3.
  • Keep repeating this process.
What is the perimeter after step 2? Step 3?

What happens to the perimeter, or the length of line traced along the outside of the figure, as the process continues?