Error estándar

En vez de decir “la desviación estándar de la distribución de las medias de la muestra” para describir una distribución de medias de la muestra, los especialistas en estadística se refieren al error estándar de la media. De manera similar, la “desviación estándar de la distribución de las proporciones de la muestra” se abrevia como error estándar de la proporción. EL término error estándar se utiliza porque da a entender un significado específico. Supongamos que deseamos saber algo sobre la edad promedio de los estudiantes de Economía Agrícola. Podríamos tomar una serie de muestras y calcular la edad promedio de cada muestra. Es altamente improbable que todas estas medias de muestra fueran iguales; es de esperar alguna variabilidad en las medias observadas. Esta variabilidad en las estadísticas de muestras proviene de un error de muestreo debido al azar; es decir; hay diferencias entre cada muestra y la población, y entre las diversas muestras, debido únicamente a los elementos que decidimos escoger para las muestras. La desviación estándar de la distribución de las medias de las muestras mide el grado hasta el cual es de esperar que varíen las medias de las diferentes muestras, debido a este error cometido en el proceso de muestreo. Por tanto, la desviación estándar de la distribución de una estadística de muestra se conoce como error estándar de la estadística. El error estándar indica no sólo el tamaño del error al azar que se ha cometido, sino también la probable precisión que puede obtenerse al utilizar una estadística de muestra para estimar un parámetro de población. Una distribución de medias de muestra que está menos extendida (y que tiene un error estándar pequeño) constituye una mejor estimación de la media de la población que una distribución de medias de muestra que está ampliamente dispersa y que tiene un error estándar más grande. El error estándar se calcula como Se debe destacar el hecho de que la varianza de las medias muestrales es inversamente proporcional al tamaño de la muestra. Esto tiene un importante resultado práctico y es que a través del tamaño muestral se puede controlar la variabilidad de la media resultante. Consecuentemente, si la muestra es grande es menos probable que se obtenga una media muestral muy alejada de la esperanza de la distribución que se está muestreando. Cuando al población es finita a la formula anterior se le agrega el multiplicador de población finita, quedando de la siguiente manera:

Usted acaba de comprar una caja de cereal con pasas y cuenta el número de pasas. La compañía afirma que la cantidad de pasas por caja es, en promedio, de 2.0 tasas, con una desviación estándar de 0.2 tasas. Su caja contenía sólo 1.9 tasas. ¿Puede la compañía asegurar que afirma lo correcto?