Angle Bisector Theorem

If a point is on the bisector of an angle, then it must be equidistant from the sides of the angle
[table][tr][td]Statements[/td][td]Reasons[/td][/tr][tr][td]line h is the angle bisector of angle B[/td][td]Given[/td][/tr][tr][td]D is a point along the angle bisector[/td][td]Given[/td][/tr][tr][td]angles DBE and FBD are congruent[/td][td]Def. of angle bisector[/td][/tr][tr][td]line j is perpendicular to BC[/td][td]Given[/td][/tr][tr][td]line i is perpendicular to AB[/td][td]Given[br][/td][/tr][/table][table][tr][td]angles E and F are congruent [/td][td]Def. of perpendicular[/td][/tr][tr][td]line BD is congruent to BD[/td][td]Reflexive property[/td][/tr][tr][td]Triangles BFD and BDE[/td][td]AAS[/td][/tr][tr][td]Segment DE and FD are congruent[/td][td]CPCTC[/td][/tr][tr][td][/td][td][/td][/tr][tr][td][/td][td][/td][/tr][/table]

Information: Angle Bisector Theorem