Google ClassroomGoogle Classroom
GeoGebraGeoGebra Classroom

Pendientes

Para entender de forma gráfica las partes que componen una función en el cálculo de las variaciones, es importante comprender los siguientes conceptos. Pendiente Inclinación de la recta respecto al eje horizontal (eje de las x tambien conocidas como abcisas) Recta Secante Intersecta dos o mas puntos en una curva. Recta Tangente Simplemente toca una curva en un punto
Image
En la gráfica siguiente veremos como se visualizan las pendientes rectas secantes y tangentes en una función. La recta roja es la recta secante porque pasa por los puntos A y B., corta a la funcion(color verde), y la recta azul es tangente porque solo toca un punto (C) en la función.

Ejemplo de pendiente como recta secante

Responde lo siguiente:

Intersecta dos o más puntos en una curva

Marca todas las que correspondan
  • A
  • B
  • C
  • D
Revisa tu respuesta (3)

Responde lo siguiente:

Toca la curva en un solo punto

Marca todas las que correspondan
  • A
  • B
  • C
  • D
Revisa tu respuesta (3)

Responde lo siguiente:

Es conocida como eje de abcisas en un plano

Marca todas las que correspondan
  • A
  • B
  • C
Revisa tu respuesta (3)
Variación Promedio En la siguiente gráfica se visualiza la variación promedio de la función:





Cálculo de pendiente

La pendiente es la variación promedio entre dos puntos, y de forma resumida se puede calcular de la siguiente forma: Nota: Esta formula aplica cuando ya se conocen la coordenada de ambos puntos en su respectivo eje (x,y)