TETRAEDRO TRUNCADO
SÓLIDOS DE ARQUIMEDES
Os sólidos de Arquimedes ou poliedros semi-regulares são poliedros convexos cujas faces são polígonos regulares de mais de um tipo. Todos os seus vértices são congruentes, isto é, existe o mesmo arranjo de polígonos em torno de cada vértice. Além disso, todo vértice pode ser transformado em outro vértice por uma simetria do poliedro. Existem apenas treze poliedros arquimedianos e são todos obtidos por operações sobre os sólidos platónicos.
Onze são obtidos truncando sólidos platónicos:
O tetraedro truncado, o cuboctaedro, o cubo truncado, o octaedro truncado, o rombicuboctaedro, o cuboctaedro truncado, o icosidodecaedro, o dodecaedro truncado, o icosaedro truncado, o rombicosidodecaedro e o icosidodecaedro truncado.
Origem do nome
Os sólidos de Arquimedes, têm o nome de Arquimedes, que os descobriu e relatou em livros que se perderam.Durante a Renascença, artistas e matemáticos descobriram de novo todos os sólidos de Arquimedes. As descobertas ficaram completas à volta de 1619, por Johannes Kepler, que definiu prismas, antiprismas e poliedros não convexos conhecidos como poliedros de Kepler-Poinsot.
Texto retirado de: Sólido de Arquimedes – Wikipédia, a enciclopédia livre (wikipedia.org)
TETREDRO TRUNCADO
