Google ClassroomGoogle Classroom
GeoGebraGeoGebra Classroom

Übung zu Gleichungssystemen

Was ist ein Gleichungssystem?

(Mehrfachantworten möglich!)

Marca todas las que correspondan
  • A
  • B
  • C
  • D
  • E
Revisa tu respuesta (3)

NEUE INFORMATIONEN

Lies dir die Informationen über die Lösungsfälle genau durch und versuche sie dir zu merken. Unten gibt es Beispiele, bei denen du angeben sollst, wieviele Lösungsfälle die Gleichungen haben.

Ein lineares Gleichungssystem mit ZWEI Gleichungen in ZWEI Variablen kann mehrer Lösungsfälle aufweisen:

1.) Eine eindeutige Lösung grafisch schneiden sich 2 Geraden in einem Punkt rechnerisch kommt ein Zahlenpaar heraus also z.B. x=3 und y=5 => L={(3/5)}
2.) Keine Lösung grafisch: 2 parallele Geraden, die sich also NICHT schneiden rechnerisch kommt eine falsche Aussage heraus also z.B. 0=4 => L={}
3.) unendlich viele Lösungen grafisch: 2 identische Geraden, die Gerade selbst ist also die Lösung rechnerisch kommt eine wahre Aussage heraus also z.B. 4=4 => L={ (x/y) / y=3x+2} bedeutet jedes Zahlenpaar, dass die (Geraden)Gleichung erfüllt ist Lösung (also jeder Punkt auf der Geraden ist Lösung dieses Gleichungssystem

Zwei Geraden können folgende Lage zueinander haben: (Mehrfachantworten möglich!)

Marca todas las que correspondan
  • A
  • B
  • C
  • D
Revisa tu respuesta (3)

Ein Gleichungssystem mit 2 Gleichungen und 2 Variablen kann daher folgende Lösungen haben: (Mehrfachantworten möglich!)

Marca todas las que correspondan
  • A
  • B
  • C
  • D
Revisa tu respuesta (3)
Man kann so ein 2x2 Gleichungssystem (= 2 Gleichungen mit 2 Variablen) auch grafisch mit Geogebra lösen, indem man beide Geraden in Geogebra zeichnen lässt. Man sieht unten, dass das Gleichungssystem eine Lösung hat (ein Schnittpunkt). I: 2x-y=3 II: y+x=3 In Geogebra habe ich in der ersten Zeile eingegeben: gl1: 2x-y=3 und die Gerade wurde sofort gezeichnet. In der zweiten Zeile habe ich gl2: x+y=3 eingegeben und die zweite Gerade wurde gezeichnet. Man kann somit ablesen, dass die Gleichungen einen Schnittpunkt haben.

Wie lautet die Lösung des Gleichungssystem? Berechne ohne Geogebra. I: 2x-y=3 II: y+x=3

Löse nun folgende Aufgaben mit Geogebra und gib an, wieviele Lösungen das Gleichungssystem hat.

Löse das lineare Gleichungssystem grafisch mit Geogebra (etwas weiter unten) und gib hier die Anzahl der Lösungen an. I: x + 2y = 5 II: 2x - y = 0

Löse das lineare Gleichungssystem grafisch mit Geogebra (etwas weiter unten) und gib hier die Anzahl der Lösungen an. I: 2x + 2y = 5 II: -4x -4y = 0

Löse das lineare Gleichungssystem grafisch mit Geogebra und gib die Anzahl der Lösungen an. I: 2x + 2y = 5 II: -4x -4y = -10