Задача 3
История этой задачи насчитывает более трёх с половиной столетий. Она была помещена в книге итальянского физика и механика Вивиани "О максимальных и минимальных значениях"в 1659 году. Винченто Вивиани (1622—1703) был учеником великого Галилео Галилея. Нам он более известен как изобретатель ртутного барометра (прибора для измерения атмосферного давления), а своим современникам — как один из лучших специалистов по задачам на максимум и минимум, а также по теории конических сечений. Своё сочинение Вивиани, следуя традициям того времени, снабдил длинным названием: "Пятая книга сочинений Аполлония Пергского о конических сечениях, заключает в себе первые исследования о наибольших и наименьших величинах и признаётся самым замечательным памятником этого великого геометра" (De maximis et minimis geometrica divinatio in quintum conicorum Apollonii Pergoei nunc desideratum). Среди множества задач на максимум и минимум, помещённых в этой книге, есть такая
Задача 3
На плоскости даны точки (, и ). Найти четвертую точку () так, чтобы сумма её расстояний от этих трех точек была минимальной.
Эксперимент
Ещё до книги Вивиани этой задачей интересовался итальянский математик Бенавентура Кавальери (1598—1647), автор знаменитого "принципа Кавальери" для вычисления площадей и объёмов, предвосхитившего интегральное исчисление, а также математик и физик Эванджелиста Торричелли (1608—1647). Говорят, что именно Торричелли получил первое решение этой задачи (скорее всего, основанное на физических соображениях). Торричелли, как и Вивиани, был учеником Галилея. Именно им в конце своей жизни уже ослепший Галилей диктовал главы из своей книги <Беседы о механике>. Подобно многим учёным позднего Возрождения, Торричелли был разносторонним человеком. Будучи профессором математики Флорентийского университета, он много занимался задачами физики (его закон распределения давления жидкости известен теперь каждому школьнику), а также механики, баллистики и оптики, и даже написал несколько работ по конструированию оптических приборов и шлифовке линз.
Согласно другим источникам, независимо от Торричелли, эту задачу решил и величайший французский математик Пьер Ферма (1601—1665). А первое чисто геометрическое решение принадлежит, по-видимому, швейцарскому геометру Якобу Штейнеру (1796—1863)