Google Classroom구글 클래스룸
GeoGebra지오지브라 클래스룸

Net of Cone

Introduction

A cone is a three-dimensional geometric shape that tapers smoothly from a flat base to a point called the vertex. A cone is like a pyramid. But it has a circular base and curved face.

Objective

To Observe the net of cone.

User Guideline

Use of slider then observe the visualization of Net.

Questions

Q.1)Study the given figure. Which is the name of solids by given net?

적용되는 모든 것을 선택하세요.
  • A
  • B
  • C
  • D
답안을 점검하세요 (3)

Construction Protocol

Firstly we open GGB applet. Then choose algebra , 2D and 3D perspectives. 1.Take a slider t. (minimum=0, maximum=1) Use input bar and follow these rule and type given terms then choose enter. 2. f= PerpendicularLine((1, 0, 0), xOyPlane) 3.A= Point(f) 4.B= Intersect(xAxis, f) 5.C=Intersect(xAxis, yAxis) 6. g=Segment(C, A) 7.=Angle(B, C, A) 8. a=Cone(B, A, 1) 9.A'= Rotate(A, t α, yAxis) 10. h= PerpendicularLine(A', xOyPlane) 11.D=Intersect(h, xOyPlane) 12.d=Distance(B, C) 13.=2(π d) / Distance(D, C) 14.C'= Rotate(C, β / 2, h) 15. C'_1=Rotate(C, (-β) / 2, h) 16.e=CircumcircularArc(C', C, C'_1 17.i=Distance(A', D) 18.j=Distance(D, C') 19.k=x(A') 20.=t π 21.m=Curve((k - j cos(u β / 2)) cos(ϕ), j sin(u β / 2), (k - j cos(u β / 2)) sin(ϕ), u, -1, 1) 22.l=Surface((k - v j cos(u β / 2)) cos(ϕ) - (1 - v) i sin(ϕ), v j sin(u β / 2), (1 - v) i cos(ϕ) + (j - v j cos(u β / 2)) sin(ϕ), u, -1, 1, v, 0, 1) 23.E=(k cos(ϕ) - i sin(ϕ), 0, i cos(ϕ) + k sin(ϕ)) 24.F=point(m) 25.G=Point(m) 26.n=Segment(F, E) 27.p=Segment(E, G) 28. Take text tool and write Net of cone.