# Equation of a Hyperbola

An

**hyperbola**is a plane curve surrounding two focal points, such that for all points on the curve, the difference of the two distances to the focal points is a constant. Analytically, the equation of a standard hyperbola centered at the origin with width 2*a*and height 2*b*is: Hyperbola je dána středem S =(m, n) a velikostmi poloos a, b. Vyjádřete křivku implicitně rovnicí v osovém tvaru a parametricky.Change the value for semi-major axis

*a*and semi-minor axis*b*by draging the sliders*a, b*.## Parametric (vector) form of an hyperbola.

The equation of a standard ellipse centered at the* S=(-2,2)* with major-axis 2*a = 6* and minor axis 2*b = 4* is:

## Implicit quadratic equation of an hyperbola.

The equation of a standard hyperbola centered at the* S=(-2,2)* with major-axis 2*a = 6* and minor-axis 2*b = 4* is: