Google ClassroomGoogle Classroom
GeoGebraGeoGebra Classroom

RigidPolygon Maker

Points to move/translate RigidPolygon https://www.reddit.com/r/geogebra Polygonmaster: L1,L2,....,L15 select n LL Inputbox RPn A0-----------A1 ~ 0° Isometric Grid of Einstein X (aperiodic monotile) I=Surface(O + u (cos(30°), sin(30°)) + v (cos(-30°), sin(-30°)), u, -10, 10, v, -10, 10) X={O, I(1, -1), I(1, -1.5), I(2, -2), I(2.5, -3), I(2, -3), I(1.5, -2.5), I(1, -3), I(0, -2.5), I(0, -2), I(-1 / 2, -1.5), I(0, -1), I(-1 / 2, 0)} α=0..360° ROT={{cos(α), sin(α)}, {-sin(α), cos(α)}} J=Surface((ROT (O + u (cos(30°), sin(30°)) + v (cos(-30°), sin(-30°)) - O)) + O, u, -10, 10, v, -10, 10) Y={O, J(1, -1), J(1, -1.5), J(2, -2), J(2.5, -3), J(2, -3), J(1.5, -2.5), J(1, -3), J(0, -2.5), J(0, -2), J(-1 / 2, -1.5), J(0, -1), J(-1 / 2, 0)}

Aperiodische Parkettierungen (aperiodic monotile - the hat - Einstein)

Aperiodische Parkettierungen (aperiodic monotile - the hat - Einstein)
Fig: E_0 Grid: Isometric, n=13, L1...L13 An aperiodic monotile, sometimes called an "einstein", is a shape that tiles the plane, but never periodically. https://www.biancahoegel.de/geometrie/ebene/parkettierung.html https://www.chiark.greenend.org.uk/~sgtatham/quasiblog/aperiodic-tilings/ https://cs.uwaterloo.ca/~csk/hat/

Figure Example M

Figure Example M
n=5, L1..L5 arrange materpoints place figure to (-4,2) set angle