Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
Anmelden
Suche
Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
GeoGebra
Startseite
Materialien
Profil
Classroom
Apps herunterladen
Die zum Fermat-Problem gehörende Maximumaufgabe
Autor:
Roman Chijner
Thema:
Fläche
,
Analysis
,
Schwerpunkt
,
Umkreis
,
Konstruktionen
,
Koordinaten
,
Geometrie
,
Schnittmenge
,
Gleichschenklige Dreiecke
,
Besondere Punkte
,
Dreiecke
https://did.mat.uni-bayreuth.de/geonet/beispiele/minimum/ ... Mit der Lösung des Fermat-Problems:
Gibt es in jedem Dreieck einen Punkt F so, daß die Summe der Entfernungen von F zu den drei Eckpunkten minimal ist?
ist somit gleichzeitig das
maximale umbeschriebene gleichseitige Dreieck
bestimmt und umgekehrt. Ein Minimum- und ein Maximumproblem, die so miteinander zusammenhängen, heißen zueinander dual. Das Fermat-Problem und die Bestimmung des maximalen gleichseitigen Umdreiecks können somit als die Urväter der Dualitätsprobleme der Optimierungstheorie angesehen werden.
GeoGebra
Neue Materialien
bewijs stelling van Pythagoras
Billard V5.2 and V6
Nikmati Keunggulan Di Bandar Judi Terpercaya
兩位數的位值
函數的單調性
Entdecke Materialien
Mr Moore Pre-Calc 2015-2016
Ramirez bisecting segment and angles
C0702X14aV2
sqrtab2-proof
Slope and y-intercept with Equation
Entdecke weitere Themen
Multiplikation
Erwartungswert
Ganze Zahlen
KGV und GGT
Hypothesentest oder Signifikanztest