Função Polinomial do 2ºgrau
FUNÇÃO POLINOMIAL DO 2° GRAU - FUNÇÃO QUADRÁTICA.
Conceito
Chama-se de função polinomial do 2° grau a uma função real f de R em R ( f : R®R) definida por f(x) = ax²  + bx + c  com a, b e c coeficientes reais e a ≠ 0.
Exemplos: 
a) f(x) = x² - 5x  + 6, com a = 1, b = - 5 e c = 6 ;
b) g(x) = -2x² + 5x, com a = - 2, b = 5 e c = 0; 
c) h(x) = x² / 2 + 8, com a = 1/ 2, b = 0 e c = 8;
d) i(x) = 4x², com a = 4, b = 0 = c.
A representação gráfica ou cartesiana da função polinomial do 2° grau  é  uma curva denominada de parábola 
 Observe que a concavidade da parábola é voltada para cima, isso se verifica em função do coeficiente de x², no caso a = 1 > 0.
 
O gráfico abaixo tem a concavidade voltada para baixo, pois a = -2 < 0.
Observe que a concavidade da parábola é voltada para cima, isso se verifica em função do coeficiente de x², no caso a = 1 > 0.
 
O gráfico abaixo tem a concavidade voltada para baixo, pois a = -2 < 0.
 Concluímos que, "se a > 0 a parábola tem a concavidade voltada para cima, se a < 0 a parábola tem a concavidade voltada para baixo."
Zero da função polinomial do 2ºgrau.
Chama-se zeros da função polinomial do 2º grau ou raízes da equação do 2ºgrau, f(x) = ax² + bx + c, com coeficientes reais e a  0, os números s x tais que f(x) = 0.
Essas raízes podem ser obtidas ou calculadas por métodos de fatoração ou uso da fórmula de Bhaskara.
, onde  (Descriminantes das raízes).
 
Consequências imediatas:
1 - Chamaremos de b²- 4ac de Δ, assim: b²- 4ac = Δ
Se Δ < 0 a função não possui zeros reais, logo a parábola não toca o eixo das abscissas.
Graficamente  
SeΔ = 0 a função possui dois zeros reais, a equação possui duas raízes reais e iguais, logo a parábola apenas toca o eixo das abscissas.
SeΔ > 0 a função possui zeros reais e distintos, logo a parábola secciona o eixo das abscissas em dois pontos  distintos e de ordenadas nulas.
Exemplos:
a) x² - 5x + 7= 0.
Calculando o descriminante da equação :
Δ = b² - 4.a.c = (-5)² -4(1)(7) = 25 - 28 = -3 < 0, logo a equação não possui raízes reais, a parábola tem a concavidade voltada para cima, pois a = 1 > 0, e, a parábola não toca o eixo das abscissas pois a equação não possui raízes reais, pois o Δ = -3 < 0.
Observe o gráfico da função abaixo:
 
b) 4x² - 4x + 1 = 0 
Calculando o descriminante da equação :
Δ = b² - 4.a.c = (-4)² -4(4)(1) = 16 - 16 = 0.
Se Δ = 0 então a equação possui dois zeros reais iguais, consequentemente a parábola toca o eixo das abscissas no ponto   ou V = (-b/(2a), 0) logo a parábola que representa a função  y = f(x) = 4x² - 4x + 1, toca o eixo no ponto V= (0,5 , 0).
 
c)  x² - 5x + 6 = 0 
Calculando o discriminante das raízes da equação acima: 
Δ = b² - 4.a.c = (-5)² -4(1)(6) = 25 - 24 = 1 > 0, a equação possui duas raízes reais  e distintas,  consequentemente a parábola que representa a função f(x) = y = x² - 5x + 6 , secciona o eixo dos x (eixo das abscissas) nos pontos (2, 0) e (3, 0).
Observe que a ordenada dos pontos de interseção da parábola com o eixo dos x(eixo das abscissas) é igual a zero.
 
Estudo de termo independente da função f(x) = y = ax² + bx + c 
Fazendo x = 0 temos: f(0) = y = a(0)² + b(0) + c = c,  ou seja para x = 0 temos y = c, concluímos que o ponto (0, c) é o ponto de interseção da parábola com o eixo das ordenadas(eixo dos y).
Observando os exemplos gráficos acima temos:
a) x² - 5x + 7= 0.
A parábola corta o eixo dos y em (0, 7) pois c = 7.
b) 4x² - 4x + 1 = 0 
Sendo c =1, podemos concluir que na parábola, representação cartesiana da função f(x) = y = 4x² - 4x + 1 a mesma corta o eixo dos y (eixo das ordenadas) no ponto (0, c) = (0, 1).
c)  x² - 5x + 6 = 0 .
O termo independente c = 6,  logo a curva que representa a função f(x) = y =  x² - 5x + 6  corta o eixo dos y no ponto (0, c) = (0, 6).
Concluímos que, "se a > 0 a parábola tem a concavidade voltada para cima, se a < 0 a parábola tem a concavidade voltada para baixo."
Zero da função polinomial do 2ºgrau.
Chama-se zeros da função polinomial do 2º grau ou raízes da equação do 2ºgrau, f(x) = ax² + bx + c, com coeficientes reais e a  0, os números s x tais que f(x) = 0.
Essas raízes podem ser obtidas ou calculadas por métodos de fatoração ou uso da fórmula de Bhaskara.
, onde  (Descriminantes das raízes).
 
Consequências imediatas:
1 - Chamaremos de b²- 4ac de Δ, assim: b²- 4ac = Δ
Se Δ < 0 a função não possui zeros reais, logo a parábola não toca o eixo das abscissas.
Graficamente  
SeΔ = 0 a função possui dois zeros reais, a equação possui duas raízes reais e iguais, logo a parábola apenas toca o eixo das abscissas.
SeΔ > 0 a função possui zeros reais e distintos, logo a parábola secciona o eixo das abscissas em dois pontos  distintos e de ordenadas nulas.
Exemplos:
a) x² - 5x + 7= 0.
Calculando o descriminante da equação :
Δ = b² - 4.a.c = (-5)² -4(1)(7) = 25 - 28 = -3 < 0, logo a equação não possui raízes reais, a parábola tem a concavidade voltada para cima, pois a = 1 > 0, e, a parábola não toca o eixo das abscissas pois a equação não possui raízes reais, pois o Δ = -3 < 0.
Observe o gráfico da função abaixo:
 
b) 4x² - 4x + 1 = 0 
Calculando o descriminante da equação :
Δ = b² - 4.a.c = (-4)² -4(4)(1) = 16 - 16 = 0.
Se Δ = 0 então a equação possui dois zeros reais iguais, consequentemente a parábola toca o eixo das abscissas no ponto   ou V = (-b/(2a), 0) logo a parábola que representa a função  y = f(x) = 4x² - 4x + 1, toca o eixo no ponto V= (0,5 , 0).
 
c)  x² - 5x + 6 = 0 
Calculando o discriminante das raízes da equação acima: 
Δ = b² - 4.a.c = (-5)² -4(1)(6) = 25 - 24 = 1 > 0, a equação possui duas raízes reais  e distintas,  consequentemente a parábola que representa a função f(x) = y = x² - 5x + 6 , secciona o eixo dos x (eixo das abscissas) nos pontos (2, 0) e (3, 0).
Observe que a ordenada dos pontos de interseção da parábola com o eixo dos x(eixo das abscissas) é igual a zero.
 
Estudo de termo independente da função f(x) = y = ax² + bx + c 
Fazendo x = 0 temos: f(0) = y = a(0)² + b(0) + c = c,  ou seja para x = 0 temos y = c, concluímos que o ponto (0, c) é o ponto de interseção da parábola com o eixo das ordenadas(eixo dos y).
Observando os exemplos gráficos acima temos:
a) x² - 5x + 7= 0.
A parábola corta o eixo dos y em (0, 7) pois c = 7.
b) 4x² - 4x + 1 = 0 
Sendo c =1, podemos concluir que na parábola, representação cartesiana da função f(x) = y = 4x² - 4x + 1 a mesma corta o eixo dos y (eixo das ordenadas) no ponto (0, c) = (0, 1).
c)  x² - 5x + 6 = 0 .
O termo independente c = 6,  logo a curva que representa a função f(x) = y =  x² - 5x + 6  corta o eixo dos y no ponto (0, c) = (0, 6).
 Observe que a concavidade da parábola é voltada para cima, isso se verifica em função do coeficiente de x², no caso a = 1 > 0.
 
O gráfico abaixo tem a concavidade voltada para baixo, pois a = -2 < 0.
Observe que a concavidade da parábola é voltada para cima, isso se verifica em função do coeficiente de x², no caso a = 1 > 0.
 
O gráfico abaixo tem a concavidade voltada para baixo, pois a = -2 < 0.
 Concluímos que, "se a > 0 a parábola tem a concavidade voltada para cima, se a < 0 a parábola tem a concavidade voltada para baixo."
Zero da função polinomial do 2ºgrau.
Chama-se zeros da função polinomial do 2º grau ou raízes da equação do 2ºgrau, f(x) = ax² + bx + c, com coeficientes reais e a  0, os números s x tais que f(x) = 0.
Essas raízes podem ser obtidas ou calculadas por métodos de fatoração ou uso da fórmula de Bhaskara.
, onde  (Descriminantes das raízes).
 
Consequências imediatas:
1 - Chamaremos de b²- 4ac de Δ, assim: b²- 4ac = Δ
Se Δ < 0 a função não possui zeros reais, logo a parábola não toca o eixo das abscissas.
Graficamente  
SeΔ = 0 a função possui dois zeros reais, a equação possui duas raízes reais e iguais, logo a parábola apenas toca o eixo das abscissas.
SeΔ > 0 a função possui zeros reais e distintos, logo a parábola secciona o eixo das abscissas em dois pontos  distintos e de ordenadas nulas.
Exemplos:
a) x² - 5x + 7= 0.
Calculando o descriminante da equação :
Δ = b² - 4.a.c = (-5)² -4(1)(7) = 25 - 28 = -3 < 0, logo a equação não possui raízes reais, a parábola tem a concavidade voltada para cima, pois a = 1 > 0, e, a parábola não toca o eixo das abscissas pois a equação não possui raízes reais, pois o Δ = -3 < 0.
Observe o gráfico da função abaixo:
 
b) 4x² - 4x + 1 = 0 
Calculando o descriminante da equação :
Δ = b² - 4.a.c = (-4)² -4(4)(1) = 16 - 16 = 0.
Se Δ = 0 então a equação possui dois zeros reais iguais, consequentemente a parábola toca o eixo das abscissas no ponto   ou V = (-b/(2a), 0) logo a parábola que representa a função  y = f(x) = 4x² - 4x + 1, toca o eixo no ponto V= (0,5 , 0).
 
c)  x² - 5x + 6 = 0 
Calculando o discriminante das raízes da equação acima: 
Δ = b² - 4.a.c = (-5)² -4(1)(6) = 25 - 24 = 1 > 0, a equação possui duas raízes reais  e distintas,  consequentemente a parábola que representa a função f(x) = y = x² - 5x + 6 , secciona o eixo dos x (eixo das abscissas) nos pontos (2, 0) e (3, 0).
Observe que a ordenada dos pontos de interseção da parábola com o eixo dos x(eixo das abscissas) é igual a zero.
 
Estudo de termo independente da função f(x) = y = ax² + bx + c 
Fazendo x = 0 temos: f(0) = y = a(0)² + b(0) + c = c,  ou seja para x = 0 temos y = c, concluímos que o ponto (0, c) é o ponto de interseção da parábola com o eixo das ordenadas(eixo dos y).
Observando os exemplos gráficos acima temos:
a) x² - 5x + 7= 0.
A parábola corta o eixo dos y em (0, 7) pois c = 7.
b) 4x² - 4x + 1 = 0 
Sendo c =1, podemos concluir que na parábola, representação cartesiana da função f(x) = y = 4x² - 4x + 1 a mesma corta o eixo dos y (eixo das ordenadas) no ponto (0, c) = (0, 1).
c)  x² - 5x + 6 = 0 .
O termo independente c = 6,  logo a curva que representa a função f(x) = y =  x² - 5x + 6  corta o eixo dos y no ponto (0, c) = (0, 6).
Concluímos que, "se a > 0 a parábola tem a concavidade voltada para cima, se a < 0 a parábola tem a concavidade voltada para baixo."
Zero da função polinomial do 2ºgrau.
Chama-se zeros da função polinomial do 2º grau ou raízes da equação do 2ºgrau, f(x) = ax² + bx + c, com coeficientes reais e a  0, os números s x tais que f(x) = 0.
Essas raízes podem ser obtidas ou calculadas por métodos de fatoração ou uso da fórmula de Bhaskara.
, onde  (Descriminantes das raízes).
 
Consequências imediatas:
1 - Chamaremos de b²- 4ac de Δ, assim: b²- 4ac = Δ
Se Δ < 0 a função não possui zeros reais, logo a parábola não toca o eixo das abscissas.
Graficamente  
SeΔ = 0 a função possui dois zeros reais, a equação possui duas raízes reais e iguais, logo a parábola apenas toca o eixo das abscissas.
SeΔ > 0 a função possui zeros reais e distintos, logo a parábola secciona o eixo das abscissas em dois pontos  distintos e de ordenadas nulas.
Exemplos:
a) x² - 5x + 7= 0.
Calculando o descriminante da equação :
Δ = b² - 4.a.c = (-5)² -4(1)(7) = 25 - 28 = -3 < 0, logo a equação não possui raízes reais, a parábola tem a concavidade voltada para cima, pois a = 1 > 0, e, a parábola não toca o eixo das abscissas pois a equação não possui raízes reais, pois o Δ = -3 < 0.
Observe o gráfico da função abaixo:
 
b) 4x² - 4x + 1 = 0 
Calculando o descriminante da equação :
Δ = b² - 4.a.c = (-4)² -4(4)(1) = 16 - 16 = 0.
Se Δ = 0 então a equação possui dois zeros reais iguais, consequentemente a parábola toca o eixo das abscissas no ponto   ou V = (-b/(2a), 0) logo a parábola que representa a função  y = f(x) = 4x² - 4x + 1, toca o eixo no ponto V= (0,5 , 0).
 
c)  x² - 5x + 6 = 0 
Calculando o discriminante das raízes da equação acima: 
Δ = b² - 4.a.c = (-5)² -4(1)(6) = 25 - 24 = 1 > 0, a equação possui duas raízes reais  e distintas,  consequentemente a parábola que representa a função f(x) = y = x² - 5x + 6 , secciona o eixo dos x (eixo das abscissas) nos pontos (2, 0) e (3, 0).
Observe que a ordenada dos pontos de interseção da parábola com o eixo dos x(eixo das abscissas) é igual a zero.
 
Estudo de termo independente da função f(x) = y = ax² + bx + c 
Fazendo x = 0 temos: f(0) = y = a(0)² + b(0) + c = c,  ou seja para x = 0 temos y = c, concluímos que o ponto (0, c) é o ponto de interseção da parábola com o eixo das ordenadas(eixo dos y).
Observando os exemplos gráficos acima temos:
a) x² - 5x + 7= 0.
A parábola corta o eixo dos y em (0, 7) pois c = 7.
b) 4x² - 4x + 1 = 0 
Sendo c =1, podemos concluir que na parábola, representação cartesiana da função f(x) = y = 4x² - 4x + 1 a mesma corta o eixo dos y (eixo das ordenadas) no ponto (0, c) = (0, 1).
c)  x² - 5x + 6 = 0 .
O termo independente c = 6,  logo a curva que representa a função f(x) = y =  x² - 5x + 6  corta o eixo dos y no ponto (0, c) = (0, 6).