Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
Sign in
Search
Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
Outline
最小問題
垂足三角形が最短の周を持つことのシュワルツの証明
フェルマー点最小証明
ヤギの水飲み
二面に寄る最短コース
光の反射とホイヘンスの原理
垂心と垂足三角形
ワトソンの定理
シュタイナー点(4点)
最小問題
Author:
Bunryu Kamimura
Topic:
Optimization Problems
,
Orthocenter
この証明のしかたがとてもエレガント。 図を動かしているだけでわかる!
垂足三角形が最短の周を持つことのシュワルツの証明
フェルマー点最小証明
ヤギの水飲み
二面に寄る最短コース
光の反射とホイヘンスの原理
垂心と垂足三角形
ワトソンの定理
シュタイナー点(4点)
Next
垂足三角形が最短の周を持つことのシュワルツの証明
New Resources
円の伸開線
等積変形2
平均変化率
standingwave
standingwave-plus
Discover Resources
エッシャーのように3(正六角形)
フェルマ螺旋
重なった部分の面積(いろいろな関数)
正n角錐の展開図(側面を連結)
正四面体の内接球の半径 のコピー
Discover Topics
Dilation
Set Theory
Subtraction
Integers
Ratios