Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
Sign in
Search
Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
Outline
最小問題
垂足三角形が最短の周を持つことのシュワルツの証明
フェルマー点最小証明
ヤギの水飲み
二面に寄る最短コース
光の反射とホイヘンスの原理
垂心と垂足三角形
ワトソンの定理
シュタイナー点(4点)
最小問題
Author:
Bunryu Kamimura
Topic:
Optimization Problems
,
Orthocenter
この証明のしかたがとてもエレガント。 図を動かしているだけでわかる!
垂足三角形が最短の周を持つことのシュワルツの証明
フェルマー点最小証明
ヤギの水飲み
二面に寄る最短コース
光の反射とホイヘンスの原理
垂心と垂足三角形
ワトソンの定理
シュタイナー点(4点)
Next
垂足三角形が最短の周を持つことのシュワルツの証明
New Resources
アステロイド
斜めドップラー
正17角形 作図 regular 17-gon 2
standingwave-reflection-fixed
接点の作る円は内接円
Discover Resources
左端区分求積と台形公式
対数関数・指数関数のグラフの比較
動点問題(1次関数) のコピー
テキストの幅に応じて自動改行する
関数の変域と値域
Discover Topics
Geometric Mean
Logic
Poisson Distribution
Pie Chart or Circle Chart
Straight Lines