Google Classroom
GeoGebra
GeoGebra Classroom
Anmelden
Suche
Google Classroom
GeoGebra
GeoGebra Classroom
Kapitel
最小問題
垂足三角形が最短の周を持つことのシュワルツの証明
フェルマー点最小証明
ヤギの水飲み
二面に寄る最短コース
光の反射とホイヘンスの原理
垂心と垂足三角形
ワトソンの定理
シュタイナー点(4点)
最小問題
Autor:
Bunryu Kamimura
Thema:
Extremwertaufgaben oder Extremwertprobleme
,
Höhenschnittpunkt
この証明のしかたがとてもエレガント。 図を動かしているだけでわかる!
垂足三角形が最短の周を持つことのシュワルツの証明
フェルマー点最小証明
ヤギの水飲み
二面に寄る最短コース
光の反射とホイヘンスの原理
垂心と垂足三角形
ワトソンの定理
シュタイナー点(4点)
Weiter
垂足三角形が最短の周を持つことのシュワルツの証明
Neue Materialien
standingwave-plus
接点の作る円は内接円
正17角形 作図 regular 17-gon
直方体の対角線
standingwave
Entdecke Materialien
左端区分求積総和
対数関数とそのグラフ(a logarithm)
定滑車の運動方程式
円運動と単振動の変位
リサージュ曲線
Entdecke weitere Themen
Logarithmusfunktionen
Komplexe Zahlen
Hyberbel
Folgen und Reihen
Differenzenquotient und Steigung